
1

Linux Networking: Linux Networking: tcptcp

David Morgan

a network

TCP process

application process

TCP process

application process

d
at

a

d
at

a

d
at

a

d
at

a

TCP context and interfacesTCP context and interfaces

Computer A Computer B

2

TCP purposes and featuresTCP purposes and features

� basic data transfer

� process-to-process multiplexing

� reliability

� flow control

� connections

Transport purposes and featuresTransport purposes and features

� process-to-process data
transfer

� reliability

� flow control

� connections

TCPTCP UDPUDP

*

* discard, no recovery

3

Basic data transfer methodBasic data transfer method

� sending TCP

– “blocks out” (segments) the data stream

– gives each block its own packet (“segment”)

� receiving TCP

– reassembles the blocks into original stream

MultiplexedMultiplexed

““processprocess--toto--processprocess”” transfertransfer

� processes get identifying numbers (“ports”)

� IP address/TCP port pair is a local “socket”

� pair of sockets, one on each of 2 machines,
associated with a unique bilateral “connection”

� packets between machines belong to a particular
one of the machines’ connections

� overall packet flow contains separate flow for
each connection

4

ReliabilityReliability

� problems with data
– damaged

– lost

– duplicated

– delivered out-of-order

� solution

– Sending TCP Receiving TCP

– number the data acknowledge good data

– require acknowledgement discard bad data

– resend unacknowledged reassemble by the numbers

Flow controlFlow control

� problem

– sending TCP might overwhelm receiving TCP

� solution

– constrain sender by requiring receiver’s

permission which data, by number range, may be

transmitted

5

TCP connectionsTCP connections

� reliability/flow control require state info

� each TCP initializes/maintains it for each data
stream

� connection ends, state info data structures
freed

TCP packet (segment) headerTCP packet (segment) header

32 bits

6

““FlagFlag”” bitsbits

TCP Header

TCP flags field

URG = urgent

ACK= acknowledgement

PSH = push

RST = reset

SYN = synchronize

FIN = finish

Establishing a Establishing a ““connectionconnection””

� client sends packet with SYN bit set

� server returns packet with SYN & ACK set

� client sends packet with ACK set

� called “3-way handshake”

� connection establishment’s signature sequence

7

33--way handshakeway handshake

host1 host2

�
T

i
m

 e

SYN=1

SYN=1, ACK=1

ACK=1

TCP TCP -- SYNSYN

SYN flag set indicates new

connection request

Client Server

8

TCP TCP -- SYN/ACKSYN/ACK

SYN and ACK

Flags set

1592481969 Ack = next expected Seq

TCP ACKTCP ACK

ACK Flag

Seq = 1592481969

9

TCP is TCP is ““stream orientedstream oriented””

� data transmitted during connection viewed as
one continuous stream

� bytes are consecutively numbered

� stream segmented into packets for transmittal

File deconstructionFile deconstruction

into sequenced packetsinto sequenced packets

data for 1st packet

0 1 1000 1999 499,999

data for 2nd packet

a 500,000-byte file

byte numbers

1st packet – 0

2nd packet – 1000

3rd packet – 2000

etc

sequence number assignments:Packet’s sequence number is the

byte-stream number of the 1st

data byte in the packet.

10

Sequence numbersSequence numbers

� relative to byte stream, not packet series

� initial sequence number randomly chosen

– during connection setup handshake

– actual byte count does not start from zero

� two number sequences

– TCP carries 2 flows (full-duplex)

– a separate sequence for each flow/direction

AcknowlegementAcknowlegement numbernumber

� also byte-stream relative

� is sequence number next-expected from partner

� acknowledges receipt of all prior bytes

� therefore called “cumulative” acknowledgement

� acknowledgements are piggybacked

– client-to-server acks ride with server-to-client data

– server-to-client acks ride with client-to-server data

11

Numbering exampleNumbering example**::

((““CC”” keystroke in telnet)keystroke in telnet)

host1 host2

�
T

i
m

 e SEQ=42 ACK=79

SEQ=79, ACK=43

SEQ= 43 ACK=80

Data=“C”

* Kurose & Ross, p. 234

Host ACKs receipt of

“C”, echoes back “C”

Host ACKs receipt of

“C”

Starting SEQs:

host1: 42

host2: 79

Data=“C”

Traffic controlTraffic control

� flow control

– adapt rate to partner’s capacity

– depends on spare room in partner’s receive buffer

� congestion control

– adapt rate to intervening path’s capacity

– depends on “just-about-anything”

12

Flow control: receive windowFlow control: receive window

receive “window” (variable size)

receive buffer (fixed size)

spare room TCP data in

buffer

data from IP

to

application

process

Partner given Partner given ““willingnesswillingness--toto--acceptaccept””

spare room TCP data in

buffer

n bytes

n

13

Congestion controlCongestion control

� cap sent-but-unacknowledged data amount

� congestion limit can exceed flow limit

� vary the cap per perceived network congestion

– cap more severely when packet loss rate rises

– relax cap when it drops

TCP Socket TCP Socket

� connection defined by socket pair

– combination of IP address and port = socket

� client IP = 10.100.13.138

� client Port = 32825

– client Socket = 10.100.13.138:32825

� server IP = 216.239.39.100

� server Port = 80 (http Default)

– Server Socket = 216.239.39.100:80

14

wellwell--known TCP portsknown TCP ports

� 21 - ftp

� 22 - ssh

� 23 - telnet

� 25 - smtp (Simple Mail Transport Protocol)

� 80 - http

� 110 - pop3 (Post Office Protocol)

� 123 - Network Time Protocol

TCP connection teardownTCP connection teardown

host1 host2

�
T

i
m

 e

FIN=1, ACK=1

FIN=1, ACK=1

ACK=1

15

FIN/ACKFIN/ACK

BiblioBiblio

� Computer Networking, Kurose & Ross,
Addison-Wesley, 2003; Chapter 3 “Transport
Layer”

� “Telnet Protocol Specification,” RFC 854,
1983

