
iproute2-ss020116 1

IP Command Reference.
Alexey N. Kuznetsov

Institute for Nuclear Research, Moscow

kuznet@ms2.inr.ac.ru

April 14, 1999

Contents

1 About this document 3

2 ip — command syntax 3

3 ip — error messages 5

4 ip link — network device configuration 6
4.1 ip link set — change device attributes 6
4.2 ip link show — display device attributes 7

5 ip address — protocol address management 11
5.1 ip address add — add a new protocol address 12
5.2 ip address delete — delete a protocol address 13
5.3 ip address show — display protocol addresses 13
5.4 ip address flush — flush protocol addresses 15

6 ip neighbour — neighbour/arp tables management 16
6.1 ip neighbour add — add a new neighbour entry

ip neighbour change — change an existing entry
ip neighbour replace — add a new entry or change an existing one 16

6.2 ip neighbour delete — delete a neighbour entry 17
6.3 ip neighbour show — list neighbour entries 18
6.4 ip neighbour flush — flush neighbour entries 20

7 ip route — routing table management 21
7.1 ip route add — add a new route

ip route change — change a route
ip route replace — change a route or add a new one 23

7.2 ip route delete — delete a route 27
7.3 ip route show — list routes . 27
7.4 ip route flush — flush routing tables 31
7.5 ip route get — get a single route 32

Copyright c© 1999 A.N.Kuznetsov

2 IP Command Reference

8 ip rule — routing policy database management 35
8.1 ip rule add — insert a new rule

ip rule delete — delete a rule . 37
8.2 ip rule show — list rules . 39

9 ip maddress — multicast addresses management 40
9.1 ip maddress show — list multicast addresses 40
9.2 ip maddress add — add a multicast address

ip maddress delete — delete a multicast address 40

10 ip mroute — multicast routing cache management 41
10.1 ip mroute show — list mroute cache entries 41

11 ip tunnel — tunnel configuration 42
11.1 ip tunnel add — add a new tunnel

ip tunnel change — change an existing tunnel
ip tunnel delete — destroy a tunnel 43

11.2 ip tunnel show — list tunnels . 44

12 ip monitor and rtmon — state monitoring 45

13 Route realms and policy propagation, rtacct 46

References 48

Appendix 48

A Source address selection 48

B Proxy ARP/NDISC 49

C Route NAT status 50

D Example: minimal host setup 52

E Example: ifcfg — interface address management 55

iproute2-ss020116 3

1 About this document

This document presents a comprehensive description of the ip utility from the iproute2
package. It is not a tutorial or user’s guide. It is a dictionary , not explaining terms,
but translating them into other terms, which may also be unknown to the reader.
However, the document is self-contained and the reader, provided they have a basic
networking background, will find enough information and examples to understand
and configure Linux-2.2 IP and IPv6 networking.

This document is split into sections explaining ip commands and options, de-
crypting ip output and containing a few examples. More voluminous examples and
some topics, which require more elaborate discussion, are in the appendix.

The paragraphs beginning with NB contain side notes, warnings about bugs and
design drawbacks. They may be skipped at the first reading.

2 ip — command syntax

The generic form of an ip command is:

ip [OPTIONS] OBJECT [COMMAND [ARGUMENTS]]

where OPTIONS is a set of optional modifiers affecting the general behaviour of the
ip utility or changing its output. All options begin with the character ’-’ and may
be used in either long or abbreviated forms. Currently, the following options are
available:

• -V, -Version

— print the version of the ip utility and exit.

• -s, -stats, -statistics

— output more information. If the option appears twice or more, the amount
of information increases. As a rule, the information is statistics or some time
values.

• -f, -family followed by a protocol family identifier: inet, inet6 or link.

— enforce the protocol family to use. If the option is not present, the protocol
family is guessed from other arguments. If the rest of the command line does
not give enough information to guess the family, ip falls back to the default
one, usually inet or any. link is a special family identifier meaning that no
networking protocol is involved.

• -4

— shortcut for -family inet.

4 IP Command Reference

• -6

— shortcut for -family inet6.

• -0

— shortcut for -family link.

• -o, -oneline

— output each record on a single line, replacing line feeds with the ’\’ charac-
ter. This is convenient when you want to count records with wc or to grep the
output. The trivial script rtpr converts the output back into readable form.

• -r, -resolve

— use the system’s name resolver to print DNS names instead of host addresses.

NB. Do not use this option when reporting bugs or asking for advice.

NB. ip never uses DNS to resolve names to addresses.

OBJECT is the object to manage or to get information about. The object types
currently understood by ip are:

• link — network device

• address — protocol (IP or IPv6) address on a device

• neighbour — ARP or NDISC cache entry

• route — routing table entry

• rule — rule in routing policy database

• maddress — multicast address

• mroute — multicast routing cache entry

• tunnel — tunnel over IP

Again, the names of all objects may be written in full or abbreviated form, f.e.
address is abbreviated as addr or just a.

COMMAND specifies the action to perform on the object. The set of possible actions
depends on the object type. As a rule, it is possible to add, delete and show (or
list) objects, but some objects do not allow all of these operations or have some
additional commands. The help command is available for all objects. It prints out a
list of available commands and argument syntax conventions.

If no command is given, some default command is assumed. Usually it is list or,
if the objects of this class cannot be listed, help.

iproute2-ss020116 5

ARGUMENTS is a list of arguments to the command. The arguments depend on
the command and object. There are two types of arguments: flags, consisting of a
single keyword, and parameters, consisting of a keyword followed by a value. For
convenience, each command has some default parameter which may be omitted. F.e.
parameter dev is the default for the ip link command, so ip link ls eth0 is equiv-
alent to ip link ls dev eth0. In the command descriptions below such parameters
are distinguished with the marker: “(default)”.

Almost all keywords may be abbreviated with several first (or even single) letters.
The shortcuts are convenient when ip is used interactively, but they are not recom-
mended in scripts or when reporting bugs or asking for advice. “Officially” allowed
abbreviations are listed in the document body.

3 ip — error messages

ip may fail for one of the following reasons:

• A syntax error on the command line: an unknown keyword, incorrectly format-
ted IP address et al . In this case ip prints an error message and exits. As a
rule, the error message will contain information about the reason for the failure.
Sometimes it also prints a help page.

• The arguments did not pass verification for self-consistency.

• ip failed to compile a kernel request from the arguments because the user didn’t
give enough information.

• The kernel returned an error to some syscall. In this case ip prints the error
message, as it is output with perror(3), prefixed with a comment and a syscall
identifier.

• The kernel returned an error to some RTNETLINK request. In this case ip

prints the error message, as it is output with perror(3) prefixed with “RT-
NETLINK answers:”.

All the operations are atomic, i.e. if the ip utility fails, it does not change anything
in the system. One harmful exception is ip link command (Sec.4, p.6), which may
change only some of the device parameters given on command line.

It is difficult to list all the error messages (especially syntax errors). However, as
a rule, their meaning is clear from the context of the command.

The most common mistakes are:

1. Netlink is not configured in the kernel. The message is:

Cannot open netlink socket: Invalid value

6 IP Command Reference

2. RTNETLINK is not configured in the kernel. In this case one of the following
messages may be printed, depending on the command:

Cannot talk to rtnetlink: Connection refused

Cannot send dump request: Connection refused

3. The CONFIG_IP_MULTIPLE_TABLES option was not selected when configuring
the kernel. In this case any attempt to use the ip rule command will fail, f.e.

kuznet@kaiser $ ip rule list

RTNETLINK error: Invalid argument

dump terminated

4 ip link — network device configuration

Object: A link is a network device and the corresponding commands display and
change the state of devices.

Commands: set and show (or list).

4.1 ip link set — change device attributes

Abbreviations: set, s.

Arguments:

• dev NAME (default)

— NAME specifies the network device on which to operate.

• up and down

— change the state of the device to UP or DOWN.

• arp on or arp off

— change the NOARP flag on the device.

NB. This operation is not allowed if the device is in state UP. Though neither the
ip utility nor the kernel check for this condition. You can get unpredictable results
changing this flag while the device is running.

• multicast on or multicast off

— change the MULTICAST flag on the device.

iproute2-ss020116 7

• dynamic on or dynamic off

— change the DYNAMIC flag on the device.

• name NAME

— change the name of the device. This operation is not recommended if the
device is running or has some addresses already configured.

• txqueuelen NUMBER or txqlen NUMBER

— change the transmit queue length of the device.

• mtu NUMBER

— change the MTU of the device.

• address LLADDRESS

— change the station address of the interface.

• broadcast LLADDRESS, brd LLADDRESS or peer LLADDRESS

— change the link layer broadcast address or the peer address when the interface
is POINTOPOINT.

NB. For most devices (f.e. for Ethernet) changing the link layer broadcast address will
break networking. Do not use it, if you do not understand what this operation really
does.

NB. The ip utility does not change the PROMISC or ALLMULTI flags. These flags are considered
obsolete and should not be changed administratively.

Warning: If multiple parameter changes are requested, ip aborts immediately after
any of the changes have failed. This is the only case when ip can move the system
to an unpredictable state. The solution is to avoid changing several parameters with
one ip link set call.

Examples:

• ip link set dummy address 00:00:00:00:00:01

— change the station address of the interface dummy.

• ip link set dummy up

— start the interface dummy.

4.2 ip link show — display device attributes

Abbreviations: show, list, lst, sh, ls, l.

8 IP Command Reference

Arguments:

• dev NAME (default)

— NAME specifies the network device to show. If this argument is omitted all
devices are listed.

• up

— only display running interfaces.

Output format:

kuznet@alisa:~ $ ip link ls eth0

3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc cbq qlen 100

link/ether 00:a0:cc:66:18:78 brd ff:ff:ff:ff:ff:ff

kuznet@alisa:~ $ ip link ls sit0

5: sit0@NONE: <NOARP,UP> mtu 1480 qdisc noqueue

link/sit 0.0.0.0 brd 0.0.0.0

kuznet@alisa:~ $ ip link ls dummy

2: dummy: <BROADCAST,NOARP> mtu 1500 qdisc noop

link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff

kuznet@alisa:~ $

The number before each colon is an interface index or ifindex . This number
uniquely identifies the interface. This is followed by the interface name (eth0, sit0
etc.). The interface name is also unique at every given moment. However, the in-
terface may disappear from the list (f.e. when the corresponding driver module is
unloaded) and another one with the same name may be created later. Besides that,
the administrator may change the name of any device with ip link set name to make
it more intelligible.

The interface name may have another name or NONE appended after the @ sign.
This means that this device is bound to some other device, i.e. packets send through
it are encapsulated and sent via the “master” device. If the name is NONE, the master
is unknown.

Then we see the interface mtu (“maximal transfer unit”). This determines the
maximal size of data which can be sent as a single packet over this interface.

qdisc (“queuing discipline”) shows the queuing algorithm used on the interface.
Particularly, noqueue means that this interface does not queue anything and noop

means that the interface is in blackhole mode i.e. all packets sent to it are immediately
discarded. qlen is the default transmit queue length of the device measured in packets.

The interface flags are summarized in the angle brackets.

• UP — the device is turned on. It is ready to accept packets for transmission and
it may inject into the kernel packets received from other nodes on the network.

iproute2-ss020116 9

• LOOPBACK — the interface does not communicate with other hosts. All pack-
ets sent through it will be returned and nothing but bounced packets can be
received.

• BROADCAST — the device has the facility to send packets to all hosts sharing the
same link. A typical example is an Ethernet link.

• POINTOPOINT — the link has only two ends with one node attached to each end.
All packets sent to this link will reach the peer and all packets received by us
came from this single peer.

If neither LOOPBACK nor BROADCAST nor POINTOPOINT are set, the interface is
assumed to be NMBA (Non-Broadcast Multi-Access). This is the most generic
type of device and the most complicated one, because the host attached to a
NBMA link has no means to send to anyone without additionally configured
information.

• MULTICAST — is an advisory flag indicating that the interface is aware of multi-
casting i.e. sending packets to some subset of neighbouring nodes. Broadcasting
is a particular case of multicasting, where the multicast group consists of all
nodes on the link. It is important to emphasize that software must not inter-
pret the absence of this flag as the inability to use multicasting on this interface.
Any POINTOPOINT and BROADCAST link is multicasting by definition, because we
have direct access to all the neighbours and, hence, to any part of them. Cer-
tainly, the use of high bandwidth multicast transfers is not recommended on
broadcast-only links because of high expense, but it is not strictly prohibited.

• PROMISC — the device listens to and feeds to the kernel all traffic on the link
even if it is not destined for us, not broadcasted and not destined for a multicast
group of which we are member. Usually this mode exists only on broadcast links
and is used by bridges and for network monitoring.

• ALLMULTI — the device receives all multicast packets wandering on the link.
This mode is used by multicast routers.

• NOARP — this flag is different from the other ones. It has no invariant value
and its interpretation depends on the network protocols involved. As a rule,
it indicates that the device needs no address resolution and that the software
or hardware knows how to deliver packets without any help from the protocol
stacks.

• DYNAMIC — is an advisory flag indicating that the interface is dynamically cre-
ated and destroyed.

• SLAVE — this interface is bonded to some other interfaces to share link capaci-
ties.

10 IP Command Reference

NB. There are other flags but they are either obsolete (NOTRAILERS) or not implemented
(DEBUG) or specific to some devices (MASTER, AUTOMEDIA and PORTSEL). We do not discuss
them here.

NB. The values of PROMISC and ALLMULTI flags shown by the ifconfig utility and by the
ip utility are different . ip link ls shows the true device state, while ifconfig shows the
virtual state which was set with ifconfig itself.

The second line contains information on the link layer addresses associated with
the device. The first word (ether, sit) defines the interface hardware type. This
type determines the format and semantics of the addresses and is logically part of the
address. The default format of the station address and the broadcast address (or the
peer address for pointopoint links) is a sequence of hexadecimal bytes separated by
colons, but some link types may have their natural address format, f.e. addresses of
tunnels over IP are printed as dotted-quad IP addresses.

NB. NBMA links have no well-defined broadcast or peer address, however this field may
contain useful information, f.e. about the address of broadcast relay or about the address of
the ARP server.

NB. Multicast addresses are not shown by this command, see ip maddr ls in Sec.9 (p.40 of
this document).

Statistics: With the -statistics option, ip also prints interface statistics:

kuznet@alisa:~ $ ip -s link ls eth0

3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc cbq qlen 100

link/ether 00:a0:cc:66:18:78 brd ff:ff:ff:ff:ff:ff

RX: bytes packets errors dropped overrun mcast

2449949362 2786187 0 0 0 0

TX: bytes packets errors dropped carrier collsns

178558497 1783945 332 0 332 35172

kuznet@alisa:~ $

RX: and TX: lines summarize receiver and transmitter statistics. They contain:

• bytes — the total number of bytes received or transmitted on the interface.
This number wraps when the maximal length of the data type natural for the
architecture is exceeded, so continuous monitoring requires a user level daemon
snapping it periodically.

• packets — the total number of packets received or transmitted on the interface.

• errors — the total number of receiver or transmitter errors.

• dropped — the total number of packets dropped due to lack of resources.

iproute2-ss020116 11

• overrun — the total number of receiver overruns resulting in dropped packets.
As a rule, if the interface is overrun, it means serious problems in the kernel or
that your machine is too slow for this interface.

• mcast — the total number of received multicast packets. This option is only
supported by a few devices.

• carrier — total number of link media failures f.e. because of lost carrier.

• collsns — the total number of collision events on Ethernet-like media. This
number may have a different sense on other link types.

• compressed — the total number of compressed packets. This is available only
for links using VJ header compression.

If the -s option is entered twice or more, ip prints more detailed statistics on
receiver and transmitter errors.

kuznet@alisa:~ $ ip -s -s link ls eth0

3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc cbq qlen 100

link/ether 00:a0:cc:66:18:78 brd ff:ff:ff:ff:ff:ff

RX: bytes packets errors dropped overrun mcast

2449949362 2786187 0 0 0 0

RX errors: length crc frame fifo missed

0 0 0 0 0

TX: bytes packets errors dropped carrier collsns

178558497 1783945 332 0 332 35172

TX errors: aborted fifo window heartbeat

0 0 0 332

kuznet@alisa:~ $

These error names are pure Ethernetisms. Other devices may have non zero values
in these fields but they may be interpreted differently.

5 ip address — protocol address management

Abbreviations: address, addr, a.

Object: The address is a protocol (IP or IPv6) address attached to a network de-
vice. Each device must have at least one address to use the corresponding protocol. It
is possible to have several different addresses attached to one device. These addresses
are not discriminated, so that the term alias is not quite appropriate for them and
we do not use it in this document.

The ip addr command displays addresses and their properties, adds new ad-
dresses and deletes old ones.

12 IP Command Reference

Commands: add, delete, flush and show (or list).

5.1 ip address add — add a new protocol address

Abbreviations: add, a.

Arguments:

• dev NAME

— the name of the device to add the address to.

• local ADDRESS (default)

— the address of the interface. The format of the address depends on the
protocol. It is a dotted quad for IP and a sequence of hexadecimal halfwords
separated by colons for IPv6. The ADDRESS may be followed by a slash and a
decimal number which encodes the network prefix length.

• peer ADDRESS

— the address of the remote endpoint for pointopoint interfaces. Again, the
ADDRESS may be followed by a slash and a decimal number, encoding the net-
work prefix length. If a peer address is specified, the local address cannot have
a prefix length. The network prefix is associated with the peer rather than with
the local address.

• broadcast ADDRESS

— the broadcast address on the interface.

It is possible to use the special symbols ’+’ and ’-’ instead of the broadcast
address. In this case, the broadcast address is derived by setting/resetting the
host bits of the interface prefix.

NB. Unlike ifconfig, the ip utility does not set any broadcast address unless explicitly
requested.

• label NAME

— Each address may be tagged with a label string. In order to preserve com-
patibility with Linux-2.0 net aliases, this string must coincide with the name of
the device or must be prefixed with the device name followed by colon.

• scope SCOPE_VALUE

— the scope of the area where this address is valid. The available scopes are
listed in file /etc/iproute2/rt_scopes. Predefined scope values are:

– global — the address is globally valid.

iproute2-ss020116 13

– site — (IPv6 only) the address is site local, i.e. it is valid inside this site.

– link — the address is link local, i.e. it is valid only on this device.

– host — the address is valid only inside this host.

Appendix A (p.48 of this document) contains more details on address scopes.

Examples:

• ip addr add 127.0.0.1/8 dev lo brd + scope host

— add the usual loopback address to the loopback device.

• ip addr add 10.0.0.1/24 brd + dev eth0 label eth0:Alias

— add the address 10.0.0.1 with prefix length 24 (i.e. netmask 255.255.255.0),
standard broadcast and label eth0:Alias to the interface eth0.

5.2 ip address delete — delete a protocol address

Abbreviations: delete, del, d.

Arguments: coincide with the arguments of ip addr add. The device name is a
required argument. The rest are optional. If no arguments are given, the first address
is deleted.

Examples:

• ip addr del 127.0.0.1/8 dev lo

— deletes the loopback address from the loopback device. It would be best not
to repeat this experiment.

• Disable IP on the interface eth0:

while ip -f inet addr del dev eth0; do

: nothing

done

Another method to disable IP on an interface using ip addr flush may be
found in sec.5.4, p.15.

5.3 ip address show — display protocol addresses

Abbreviations: show, list, lst, sh, ls, l.

14 IP Command Reference

Arguments:

• dev NAME (default)

— the name of the device.

• scope SCOPE_VAL

— only list addresses with this scope.

• to PREFIX

— only list addresses matching this prefix.

• label PATTERN

— only list addresses with labels matching the PATTERN. PATTERN is a usual
shell style pattern.

• dynamic and permanent

— (IPv6 only) only list addresses installed due to stateless address configuration
or only list permanent (not dynamic) addresses.

• tentative

— (IPv6 only) only list addresses which did not pass duplicate address detection.

• deprecated

— (IPv6 only) only list deprecated addresses.

• primary and secondary

— only list primary (or secondary) addresses.

Output format:

kuznet@alisa:~ $ ip addr ls eth0

3: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc cbq qlen 100

link/ether 00:a0:cc:66:18:78 brd ff:ff:ff:ff:ff:ff

inet 193.233.7.90/24 brd 193.233.7.255 scope global eth0

inet6 3ffe:2400:0:1:2a0:ccff:fe66:1878/64 scope global dynamic

valid_lft forever preferred_lft 604746sec

inet6 fe80::2a0:ccff:fe66:1878/10 scope link

kuznet@alisa:~ $

The first two lines coincide with the output of ip link ls. It is natural to
interpret link layer addresses as addresses of the protocol family AF_PACKET.

Then the list of IP and IPv6 addresses follows, accompanied by additional address
attributes: scope value (see Sec.5.1, p.12 above), flags and the address label.

Address flags are set by the kernel and cannot be changed administratively. Cur-
rently, the following flags are defined:

iproute2-ss020116 15

1. secondary

— the address is not used when selecting the default source address of outgoing
packets (Cf. Appendix A, p.48.). An IP address becomes secondary if another
address with the same prefix bits already exists. The first address is primary.
It is the leader of the group of all secondary addresses. When the leader is
deleted, all secondaries are purged too.

2. dynamic

— the address was created due to stateless autoconfiguration [2]. In this case
the output also contains information on times, when the address is still valid.
After preferred_lft expires the address is moved to the deprecated state.
After valid_lft expires the address is finally invalidated.

3. deprecated

— the address is deprecated, i.e. it is still valid, but cannot be used by newly
created connections.

4. tentative

— the address is not used because duplicate address detection [2] is still not
complete or failed.

5.4 ip address flush — flush protocol addresses

Abbreviations: flush, f.

Description: This command flushes the protocol addresses selected by some crite-
ria.

Arguments: This command has the same arguments as show. The difference is
that it does not run when no arguments are given.

Warning: This command (and other flush commands described below) is pretty
dangerous. If you make a mistake, it will not forgive it, but will cruelly purge all the
addresses.

Statistics: With the -statistics option, the command becomes verbose. It prints
out the number of deleted addresses and the number of rounds made to flush the
address list. If this option is given twice, ip addr flush also dumps all the deleted
addresses in the format described in the previous subsection.

16 IP Command Reference

Example: Delete all the addresses from the private network 10.0.0.0/8:

netadm@amber:~ # ip -s -s a f to 10/8

2: dummy inet 10.7.7.7/16 brd 10.7.255.255 scope global dummy

3: eth0 inet 10.10.7.7/16 brd 10.10.255.255 scope global eth0

4: eth1 inet 10.8.7.7/16 brd 10.8.255.255 scope global eth1

*** Round 1, deleting 3 addresses ***

*** Flush is complete after 1 round ***

netadm@amber:~ #

Another instructive example is disabling IP on all the Ethernets:

netadm@amber:~ # ip -4 addr flush label "eth*"

And the last example shows how to flush all the IPv6 addresses acquired by the host
from stateless address autoconfiguration after you enabled forwarding or disabled
autoconfiguration.

netadm@amber:~ # ip -6 addr flush dynamic

6 ip neighbour — neighbour/arp tables manage-

ment

Abbreviations: neighbour, neighbor, neigh, n.

Object: neighbour objects establish bindings between protocol addresses and link
layer addresses for hosts sharing the same link. Neighbour entries are organized into
tables. The IPv4 neighbour table is known by another name — the ARP table.

The corresponding commands display neighbour bindings and their properties,
add new neighbour entries and delete old ones.

Commands: add, change, replace, delete, flush and show (or list).

See also: Appendix B, p.49 describes how to manage proxy ARP/NDISC with the
ip utility.

6.1 ip neighbour add — add a new neighbour entry

ip neighbour change — change an existing entry
ip neighbour replace — add a new entry or change an

existing one

Abbreviations: add, a; change, chg; replace, repl.

iproute2-ss020116 17

Description: These commands create new neighbour records or update existing
ones.

Arguments:

• to ADDRESS (default)

— the protocol address of the neighbour. It is either an IPv4 or IPv6 address.

• dev NAME

— the interface to which this neighbour is attached.

• lladdr LLADDRESS

— the link layer address of the neighbour. LLADDRESS can also be null.

• nud NUD_STATE

— the state of the neighbour entry. nud is an abbreviation for “Neighbour
Unreachability Detection”. The state can take one of the following values:

1. permanent — the neighbour entry is valid forever and can be only be
removed administratively.

2. noarp — the neighbour entry is valid. No attempts to validate this entry
will be made but it can be removed when its lifetime expires.

3. reachable — the neighbour entry is valid until the reachability timeout
expires.

4. stale — the neighbour entry is valid but suspicious. This option to
ip neigh does not change the neighbour state if it was valid and the
address is not changed by this command.

Examples:

• ip neigh add 10.0.0.3 lladdr 0:0:0:0:0:1 dev eth0 nud perm

— add a permanent ARP entry for the neighbour 10.0.0.3 on the device eth0.

• ip neigh chg 10.0.0.3 dev eth0 nud reachable

— change its state to reachable.

6.2 ip neighbour delete — delete a neighbour entry

Abbreviations: delete, del, d.

Description: This command invalidates a neighbour entry.

18 IP Command Reference

Arguments: The arguments are the same as with ip neigh add, except that
lladdr and nud are ignored.

Example:

• ip neigh del 10.0.0.3 dev eth0

— invalidate an ARP entry for the neighbour 10.0.0.3 on the device eth0.

NB. The deleted neighbour entry will not disappear from the tables immediately. If it is in
use it cannot be deleted until the last client releases it. Otherwise it will be destroyed during
the next garbage collection.

Warning: Attempts to delete or manually change a noarp entry created by the ker-
nel may result in unpredictable behaviour. Particularly, the kernel may try to resolve
this address even on a NOARP interface or if the address is multicast or broadcast.

6.3 ip neighbour show — list neighbour entries

Abbreviations: show, list, sh, ls.

Description: This commands displays neighbour tables.

Arguments:

• to ADDRESS (default)

— the prefix selecting the neighbours to list.

• dev NAME

— only list the neighbours attached to this device.

• unused

— only list neighbours which are not currently in use.

• nud NUD_STATE

— only list neighbour entries in this state. NUD_STATE takes values listed below
or the special value all which means all states. This option may occur more
than once. If this option is absent, ip lists all entries except for none and noarp.

iproute2-ss020116 19

Output format:

kuznet@alisa:~ $ ip neigh ls

:: dev lo lladdr 00:00:00:00:00:00 nud noarp

fe80::200:cff:fe76:3f85 dev eth0 lladdr 00:00:0c:76:3f:85 router \

nud stale

0.0.0.0 dev lo lladdr 00:00:00:00:00:00 nud noarp

193.233.7.254 dev eth0 lladdr 00:00:0c:76:3f:85 nud reachable

193.233.7.85 dev eth0 lladdr 00:e0:1e:63:39:00 nud stale

kuznet@alisa:~ $

The first word of each line is the protocol address of the neighbour. Then the
device name follows. The rest of the line describes the contents of the neighbour
entry identified by the pair (device, address).

lladdr is the link layer address of the neighbour.
nud is the state of the “neighbour unreachability detection” machine for this entry.

The detailed description of the neighbour state machine can be found in [1]. Here is
the full list of the states with short descriptions:

1. none — the state of the neighbour is void.

2. incomplete — the neighbour is in the process of resolution.

3. reachable — the neighbour is valid and apparently reachable.

4. stale — the neighbour is valid, but is probably already unreachable, so the
kernel will try to check it at the first transmission.

5. delay — a packet has been sent to the stale neighbour and the kernel is waiting
for confirmation.

6. probe — the delay timer expired but no confirmation was received. The kernel
has started to probe the neighbour with ARP/NDISC messages.

7. failed — resolution has failed.

8. noarp — the neighbour is valid. No attempts to check the entry will be made.

9. permanent — it is a noarp entry, but only the administrator may remove the
entry from the neighbour table.

The link layer address is valid in all states except for none, failed and incomplete.
IPv6 neighbours can be marked with the additional flag router which means that

the neighbour introduced itself as an IPv6 router [1].

20 IP Command Reference

Statistics: The -statistics option displays some usage statistics, f.e.

kuznet@alisa:~ $ ip -s n ls 193.233.7.254

193.233.7.254 dev eth0 lladdr 00:00:0c:76:3f:85 ref 5 used 12/13/20 \

nud reachable

kuznet@alisa:~ $

Here ref is the number of users of this entry and used is a triplet of time intervals
in seconds separated by slashes. In this case they show that:

1. the entry was used 12 seconds ago.

2. the entry was confirmed 13 seconds ago.

3. the entry was updated 20 seconds ago.

6.4 ip neighbour flush — flush neighbour entries

Abbreviations: flush, f.

Description: This command flushes neighbour tables, selecting entries to flush by
some criteria.

Arguments: This command has the same arguments as show. The differences are
that it does not run when no arguments are given, and that the default neighbour
states to be flushed do not include permanent and noarp.

Statistics: With the -statistics option, the command becomes verbose. It prints
out the number of deleted neighbours and the number of rounds made to flush the
neighbour table. If the option is given twice, ip neigh flush also dumps all the
deleted neighbours in the format described in the previous subsection.

Example:

netadm@alisa:~ # ip -s -s n f 193.233.7.254

193.233.7.254 dev eth0 lladdr 00:00:0c:76:3f:85 ref 5 used 12/13/20 \

nud reachable

*** Round 1, deleting 1 entries ***

*** Flush is complete after 1 round ***

netadm@alisa:~ #

iproute2-ss020116 21

7 ip route — routing table management

Abbreviations: route, ro, r.

Object: route entries in the kernel routing tables keep information about paths to
other networked nodes.

Each route entry has a key consisting of a prefix (i.e. a pair containing a network
address and the length of its mask) and, optionally, the TOS value. An IP packet
matches the route if the highest bits of its destination address are equal to the route
prefix at least up to the prefix length and if the TOS of the route is zero or equal to
the TOS of the packet.

If several routes match the packet, the following pruning rules are used to select
the best one (see [3]):

1. The longest matching prefix is selected. All shorter ones are dropped.

2. If the TOS of some route with the longest prefix is equal to the TOS of the
packet, the routes with different TOS are dropped.

If no exact TOS match was found and routes with TOS=0 exist, the rest of
routes are pruned.

Otherwise, the route lookup fails.

3. If several routes remain after the previous steps, then the routes with the best
preference values are selected.

4. If we still have several routes, then the first of them is selected.

NB. Note the ambiguity of the last step. Unfortunately, Linux historically allows
such a bizarre situation. The sense of the word “first” depends on the order of route
additions and it is practically impossible to maintain a bundle of such routes in this
order.

For simplicity we will limit ourselves to the case where such a situation is impos-
sible and routes are uniquely identified by the triplet {prefix, tos, preference}.
Actually, it is impossible to create non-unique routes with ip commands de-
scribed in this section.

One useful exception to this rule is the default route on non-forwarding hosts.
It is “officially” allowed to have several fallback routes when several routers are
present on directly connected networks. In this case, Linux-2.2 makes “dead
gateway detection” [4] controlled by neighbour unreachability detection and by
advice from transport protocols to select a working router, so the order of the
routes is not essential. However, in this case, fiddling with default routes manu-
ally is not recommended. Use the Router Discovery protocol (see Appendix D,
p.52) instead. Actually, Linux-2.2 IPv6 does not give user level applications
any access to default routes.

22 IP Command Reference

Certainly, the steps above are not performed exactly in this sequence. Instead,
the routing table in the kernel is kept in some data structure to achieve the final
result with minimal cost. However, not depending on a particular routing algorithm
implemented in the kernel, we can summarize the statements above as: a route is
identified by the triplet {prefix, tos, preference}. This key lets us locate the route in
the routing table.

Route attributes: Each route key refers to a routing information record containing
the data required to deliver IP packets (f.e. output device and next hop router) and
some optional attributes (f.e. the path MTU or the preferred source address when
communicating with this destination). These attributes are described in the following
subsection.

Route types: It is important that the set of required and optional attributes de-
pend on the route type. The most important route type is unicast. It describes real
paths to other hosts. As a rule, common routing tables contain only such routes.
However, there are other types of routes with different semantics. The full list of
types understood by Linux-2.2 is:

• unicast — the route entry describes real paths to the destinations covered by
the route prefix.

• unreachable — these destinations are unreachable. Packets are discarded and
the ICMP message host unreachable is generated. The local senders get an
EHOSTUNREACH error.

• blackhole — these destinations are unreachable. Packets are discarded silently.
The local senders get an EINVAL error.

• prohibit — these destinations are unreachable. Packets are discarded and the
ICMP message communication administratively prohibited is generated. The
local senders get an EACCES error.

• local — the destinations are assigned to this host. The packets are looped
back and delivered locally.

• broadcast — the destinations are broadcast addresses. The packets are sent
as link broadcasts.

• throw — a special control route used together with policy rules (see sec.8, p.35).
If such a route is selected, lookup in this table is terminated pretending that no
route was found. Without policy routing it is equivalent to the absence of the
route in the routing table. The packets are dropped and the ICMP message net

unreachable is generated. The local senders get an ENETUNREACH error.

iproute2-ss020116 23

• nat — a special NAT route. Destinations covered by the prefix are considered to
be dummy (or external) addresses which require translation to real (or internal)
ones before forwarding. The addresses to translate to are selected with the
attribute via. More about NAT is in Appendix C, p.50.

• anycast — (not implemented) the destinations are anycast addresses assigned
to this host. They are mainly equivalent to local with one difference: such
addresses are invalid when used as the source address of any packet.

• multicast — a special type used for multicast routing. It is not present in
normal routing tables.

Route tables: Linux-2.2 can pack routes into several routing tables identified by a
number in the range from 1 to 255 or by name from the file /etc/iproute2/rt_tables.
By default all normal routes are inserted into the main table (ID 254) and the kernel
only uses this table when calculating routes.

Actually, one other table always exists, which is invisible but even more important.
It is the local table (ID 255). This table consists of routes for local and broadcast ad-
dresses. The kernel maintains this table automatically and the administrator usually
need not modify it or even look at it.

The multiple routing tables enter the game when policy routing is used. See sec.8,
p.35. In this case, the table identifier effectively becomes one more parameter, which
should be added to the triplet {prefix, tos, preference} to uniquely identify the route.

7.1 ip route add — add a new route

ip route change — change a route
ip route replace — change a route or add a new one

Abbreviations: add, a; change, chg; replace, repl.

Arguments:

• to PREFIX or to TYPE PREFIX (default)

— the destination prefix of the route. If TYPE is omitted, ip assumes type
unicast. Other values of TYPE are listed above. PREFIX is an IP or IPv6
address optionally followed by a slash and the prefix length. If the length of the
prefix is missing, ip assumes a full-length host route. There is also a special
PREFIX — default — which is equivalent to IP 0/0 or to IPv6 ::/0.

• tos TOS or dsfield TOS

— the Type Of Service (TOS) key. This key has no associated mask and the
longest match is understood as: First, compare the TOS of the route and of

24 IP Command Reference

the packet. If they are not equal, then the packet may still match a route with
a zero TOS. TOS is either an 8 bit hexadecimal number or an identifier from
/etc/iproute2/rt dsfield.

• metric NUMBER or preference NUMBER

— the preference value of the route. NUMBER is an arbitrary 32bit number.

• table TABLEID

— the table to add this route to. TABLEID may be a number or a string from
the file /etc/iproute2/rt_tables. If this parameter is omitted, ip assumes
the main table, with the exception of local, broadcast and nat routes, which
are put into the local table by default.

• dev NAME

— the output device name.

• via ADDRESS

— the address of the nexthop router. Actually, the sense of this field depends
on the route type. For normal unicast routes it is either the true nexthop
router or, if it is a direct route installed in BSD compatibility mode, it can be
a local address of the interface. For NAT routes it is the first address of the
block of translated IP destinations.

• src ADDRESS

— the source address to prefer when sending to the destinations covered by the
route prefix.

• realm REALMID

— the realm to which this route is assigned. REALMID may be a number or a
string from the file /etc/iproute2/rt_realms. Sec.13 (p.46) contains more
information on realms.

• mtu MTU or mtu lock MTU

— the MTU along the path to the destination. If the modifier lock is not used,
the MTU may be updated by the kernel due to Path MTU Discovery. If the
modifier lock is used, no path MTU discovery will be tried, all packets will be
sent without the DF bit in IPv4 case or fragmented to MTU for IPv6.

• window NUMBER

— the maximal window for TCP to advertise to these destinations, measured
in bytes. It limits maximal data bursts that our TCP peers are allowed to send
to us.

iproute2-ss020116 25

• rtt NUMBER

— the initial RTT (“Round Trip Time”) estimate.

• rttvar NUMBER

— [2.3.15+ only] the initial RTT variance estimate.

• ssthresh NUMBER

— [2.3.15+ only] an estimate for the initial slow start threshold.

• cwnd NUMBER

— [2.3.15+ only] the clamp for congestion window. It is ignored if the lock

flag is not used.

• advmss NUMBER

— [2.3.15+ only] the MSS (“Maximal Segment Size”) to advertise to these
destinations when establishing TCP connections. If it is not given, Linux uses
a default value calculated from the first hop device MTU.

NB. If the path to these destination is asymmetric, this guess may be wrong.

• reordering NUMBER

— [2.3.15+ only] Maximal reordering on the path to this destination. If it is not
given, Linux uses the value selected with sysctl variable net/ipv4/tcp_reordering.

• nexthop NEXTHOP

— the nexthop of a multipath route. NEXTHOP is a complex value with its own
syntax similar to the top level argument lists:

– via ADDRESS is the nexthop router.

– dev NAME is the output device.

– weight NUMBER is a weight for this element of a multipath route reflecting
its relative bandwidth or quality.

• scope SCOPE_VAL

— the scope of the destinations covered by the route prefix. SCOPE_VAL may be
a number or a string from the file /etc/iproute2/rt_scopes. If this parameter
is omitted, ip assumes scope global for all gatewayed unicast routes, scope
link for direct unicast and broadcast routes and scope host for local routes.

• protocol RTPROTO

— the routing protocol identifier of this route. RTPROTO may be a number or
a string from the file /etc/iproute2/rt_protos. If the routing protocol ID is

26 IP Command Reference

not given, ip assumes protocol boot (i.e. it assumes the route was added by
someone who doesn’t understand what they are doing). Several protocol values
have a fixed interpretation. Namely:

– redirect — the route was installed due to an ICMP redirect.

– kernel — the route was installed by the kernel during autoconfiguration.

– boot — the route was installed during the bootup sequence. If a routing
daemon starts, it will purge all of them.

– static — the route was installed by the administrator to override dynamic
routing. Routing daemon will respect them and, probably, even advertise
them to its peers.

– ra — the route was installed by Router Discovery protocol.

The rest of the values are not reserved and the administrator is free to assign
(or not to assign) protocol tags. At least, routing daemons should take care of
setting some unique protocol values, f.e. as they are assigned in rtnetlink.h

or in rt_protos database.

• onlink

— pretend that the nexthop is directly attached to this link, even if it does not
match any interface prefix. One application of this option may be found in [6].

• equalize

— allow packet by packet randomization on multipath routes. Without this
modifier, the route will be frozen to one selected nexthop, so that load splitting
will only occur on per-flow base. equalize only works if the kernel is patched.

NB. Actually there are more commands: prepend does the same thing as classic route add,
i.e. adds a route, even if another route to the same destination exists. Its opposite case is
append, which adds the route to the end of the list. Avoid these features.

NB. More sad news, IPv6 only understands the append command correctly. All the others
are translated into append commands. Certainly, this will change in the future.

Examples:

• add a plain route to network 10.0.0/24 via gateway 193.233.7.65

ip route add 10.0.0/24 via 193.233.7.65

• change it to a direct route via the dummy device

ip ro chg 10.0.0/24 dev dummy

iproute2-ss020116 27

• add a default multipath route splitting the load between ppp0 and ppp1

ip route add default scope global nexthop dev ppp0 \

nexthop dev ppp1

Note the scope value. It is not necessary but it informs the kernel that this
route is gatewayed rather than direct. Actually, if you know the addresses of
remote endpoints it would be better to use the via parameter.

• announce that the address 192.203.80.144 is not a real one, but should be trans-
lated to 193.233.7.83 before forwarding

ip route add nat 192.203.80.144 via 193.233.7.83

Backward translation is setup with policy rules described in the following section
(sec.8, p.35).

7.2 ip route delete — delete a route

Abbreviations: delete, del, d.

Arguments: ip route del has the same arguments as ip route add, but their
semantics are a bit different.

Key values (to, tos, preference and table) select the route to delete. If optional
attributes are present, ip verifies that they coincide with the attributes of the route
to delete. If no route with the given key and attributes was found, ip route del

fails.
NB. Linux-2.0 had the option to delete a route selected only by prefix address, ignoring its
length (i.e. netmask). This option no longer exists because it was ambiguous. However, look
at ip route flush (sec.7.4, p.31) which provides similar and even richer functionality.

Example:

• delete the multipath route created by the command in previous subsection

ip route del default scope global nexthop dev ppp0 \

nexthop dev ppp1

7.3 ip route show — list routes

Abbreviations: show, list, sh, ls, l.

Description: the command displays the contents of the routing tables or the route(s)
selected by some criteria.

28 IP Command Reference

Arguments:

• to SELECTOR (default)

— only select routes from the given range of destinations. SELECTOR consists
of an optional modifier (root, match or exact) and a prefix. root PREFIX

selects routes with prefixes not shorter than PREFIX. F.e. root 0/0 selects the
entire routing table. match PREFIX selects routes with prefixes not longer than
PREFIX. F.e. match 10.0/16 selects 10.0/16, 10/8 and 0/0, but it does not
select 10.1/16 and 10.0.0/24. And exact PREFIX (or just PREFIX) selects
routes with this exact prefix. If neither of these options are present, ip assumes
root 0/0 i.e. it lists the entire table.

• tos TOS or dsfield TOS

— only select routes with the given TOS.

• table TABLEID

— show the routes from this table(s). The default setting is to show table

main. TABLEID may either be the ID of a real table or one of the special values:

– all — list all of the tables.

– cache — dump the routing cache.

NB. IPv6 has a single table. However, splitting it into main, local and cache is
emulated by the ip utility.

• cloned or cached

— list cloned routes i.e. routes which were dynamically forked from other routes
because some route attribute (f.e. MTU) was updated. Actually, it is equivalent
to table cache.

• from SELECTOR

— the same syntax as for to, but it binds the source address range rather than
destinations. Note that the from option only works with cloned routes.

• protocol RTPROTO

— only list routes of this protocol.

• scope SCOPE_VAL

— only list routes with this scope.

• type TYPE

— only list routes of this type.

iproute2-ss020116 29

• dev NAME

— only list routes going via this device.

• via PREFIX

— only list routes going via the nexthop routers selected by PREFIX.

• src PREFIX

— only list routes with preferred source addresses selected by PREFIX.

• realm REALMID or realms FROMREALM/TOREALM

— only list routes with these realms.

Examples: Let us count routes of protocol gated/bgp on a router:

kuznet@amber:~ $ ip ro ls proto gated/bgp | wc

1413 9891 79010

kuznet@amber:~ $

To count the size of the routing cache, we have to use the -o option because cached
attributes can take more than one line of output:

kuznet@amber:~ $ ip -o ro ls cloned | wc

159 2543 18707

kuznet@amber:~ $

Output format: The output of this command consists of per route records sep-
arated by line feeds. However, some records may consist of more than one line:
particularly, this is the case when the route is cloned or you requested additional
statistics. If the -o option was given, then line feeds separating lines inside records
are replaced with the backslash sign.

The output has the same syntax as arguments given to ip route add, so that it
can be understood easily. F.e.

kuznet@amber:~ $ ip ro ls 193.233.7/24

193.233.7.0/24 dev eth0 proto gated/conn scope link \

src 193.233.7.65 realms inr.ac

kuznet@amber:~ $

If you list cloned entries, the output contains other attributes which are evaluated
during route calculation and updated during route lifetime. An example of the output
is:

30 IP Command Reference

kuznet@amber:~ $ ip ro ls 193.233.7.82 tab cache

193.233.7.82 from 193.233.7.82 dev eth0 src 193.233.7.65 \

realms inr.ac/inr.ac

cache <src-direct,redirect> mtu 1500 rtt 300 iif eth0

193.233.7.82 dev eth0 src 193.233.7.65 realms inr.ac

cache mtu 1500 rtt 300

kuznet@amber:~ $

NB. The route looks a bit strange, doesn’t it? Did you notice that it is a path from
193.233.7.82 back to 193.233.82? Well, you will see in the section on ip route get (p.34)
how it appeared.

The second line, starting with the word cache, shows additional attributes which
normal routes do not possess. Cached flags are summarized in angle brackets:

• local — packets are delivered locally. It stands for loopback unicast routes,
for broadcast routes and for multicast routes, if this host is a member of the
corresponding group.

• reject — the path is bad. Any attempt to use it results in an error. See
attribute error below (p.31).

• mc — the destination is multicast.

• brd — the destination is broadcast.

• src-direct — the source is on a directly connected interface.

• redirected — the route was created by an ICMP Redirect.

• redirect — packets going via this route will trigger an ICMP redirect.

• fastroute — the route is eligible to be used for fastroute.

• equalize — make packet by packet randomization along this path.

• dst-nat — the destination address requires translation.

• src-nat — the source address requires translation.

• masq — the source address requires masquerading. This feature disappeared in
linux-2.4.

• notify — (not implemented) change/deletion of this route will trigger RT-
NETLINK notification.

Then some optional attributes follow:

iproute2-ss020116 31

• error — on reject routes it is error code returned to local senders when they
try to use this route. These error codes are translated into ICMP error codes,
sent to remote senders, according to the rules described above in the subsection
devoted to route types (p.22).

• expires — this entry will expire after this timeout.

• iif — the packets for this path are expected to arrive on this interface.

Statistics: With the -statistics option, more information about this route is
shown:

• users — the number of users of this entry.

• age — shows when this route was last used.

• used — the number of lookups of this route since its creation.

7.4 ip route flush — flush routing tables

Abbreviations: flush, f.

Description: this command flushes routes selected by some criteria.

Arguments: the arguments have the same syntax and semantics as the arguments
of ip route show, but routing tables are not listed but purged. The only difference
is the default action: show dumps all the IP main routing table but flush prints the
helper page. The reason for this difference does not require any explanation, does it?

Statistics: With the -statistics option, the command becomes verbose. It prints
out the number of deleted routes and the number of rounds made to flush the routing
table. If the option is given twice, ip route flush also dumps all the deleted routes
in the format described in the previous subsection.

Examples: The first example flushes all the gatewayed routes from the main table
(f.e. after a routing daemon crash).

netadm@amber:~ # ip -4 ro flush scope global type unicast

This option deserves to be put into a scriptlet routef.
NB. This option was described in the route(8) man page borrowed from BSD, but was never
implemented in Linux.

The second example flushes all IPv6 cloned routes:

32 IP Command Reference

netadm@amber:~ # ip -6 -s -s ro flush cache

3ffe:2400::220:afff:fef4:c5d1 via 3ffe:2400::220:afff:fef4:c5d1 \

dev eth0 metric 0

cache used 2 age 12sec mtu 1500 rtt 300

3ffe:2400::280:adff:feb7:8034 via 3ffe:2400::280:adff:feb7:8034 \

dev eth0 metric 0

cache used 2 age 15sec mtu 1500 rtt 300

3ffe:2400::280:c8ff:fe59:5bcc via 3ffe:2400::280:c8ff:fe59:5bcc \

dev eth0 metric 0

cache users 1 used 1 age 23sec mtu 1500 rtt 300

3ffe:2400:0:1:2a0:ccff:fe66:1878 via 3ffe:2400:0:1:2a0:ccff:fe66:1878 \

dev eth1 metric 0

cache used 2 age 20sec mtu 1500 rtt 300

3ffe:2400:0:1:a00:20ff:fe71:fb30 via 3ffe:2400:0:1:a00:20ff:fe71:fb30 \

dev eth1 metric 0

cache used 2 age 33sec mtu 1500 rtt 300

ff02::1 via ff02::1 dev eth1 metric 0

cache users 1 used 1 age 45sec mtu 1500 rtt 300

*** Round 1, deleting 6 entries ***

*** Flush is complete after 1 round ***

netadm@amber:~ # ip -6 -s -s ro flush cache

Nothing to flush.

netadm@amber:~ #

The third example flushes BGP routing tables after a gated death.

netadm@amber:~ # ip ro ls proto gated/bgp | wc

1408 9856 78730

netadm@amber:~ # ip -s ro f proto gated/bgp

*** Round 1, deleting 1408 entries ***

*** Flush is complete after 1 round ***

netadm@amber:~ # ip ro f proto gated/bgp

Nothing to flush.

netadm@amber:~ # ip ro ls proto gated/bgp

netadm@amber:~ #

7.5 ip route get — get a single route

Abbreviations: get, g.

Description: this command gets a single route to a destination and prints its con-
tents exactly as the kernel sees it.

iproute2-ss020116 33

Arguments:

• to ADDRESS (default)

— the destination address.

• from ADDRESS

— the source address.

• tos TOS or dsfield TOS

— the Type Of Service.

• iif NAME

— the device from which this packet is expected to arrive.

• oif NAME

— force the output device on which this packet will be routed.

• connected

— if no source address (option from) was given, relookup the route with the
source set to the preferred address received from the first lookup. If policy
routing is used, it may be a different route.

Note that this operation is not equivalent to ip route show. show shows exist-
ing routes. get resolves them and creates new clones if necessary. Essentially, get
is equivalent to sending a packet along this path. If the iif argument is not given,
the kernel creates a route to output packets towards the requested destination. This
is equivalent to pinging the destination with a subsequent ip route ls cache, how-
ever, no packets are actually sent. With the iif argument, the kernel pretends that
a packet arrived from this interface and searches for a path to forward the packet.

Output format: This command outputs routes in the same format as ip route ls.

Examples:

• Find a route to output packets to 193.233.7.82:

kuznet@amber:~ $ ip route get 193.233.7.82

193.233.7.82 dev eth0 src 193.233.7.65 realms inr.ac

cache mtu 1500 rtt 300

kuznet@amber:~ $

• Find a route to forward packets arriving on eth0 from 193.233.7.82 and destined
for 193.233.7.82:

34 IP Command Reference

kuznet@amber:~ $ ip r g 193.233.7.82 from 193.233.7.82 iif eth0

193.233.7.82 from 193.233.7.82 dev eth0 src 193.233.7.65 \

realms inr.ac/inr.ac

cache <src-direct,redirect> mtu 1500 rtt 300 iif eth0

kuznet@amber:~ $

NB. This is the command that created the funny route from 193.233.7.82 looped back
to 193.233.7.82 (cf. NB on p.30). Note the redirect flag on it.

• Find a multicast route for packets arriving on eth0 from host 193.233.7.82
and destined for multicast group 224.2.127.254 (it is assumed that a multicast
routing daemon is running. In this case, it is pimd)

kuznet@amber:~ $ ip r g 224.2.127.254 from 193.233.7.82 iif eth0

multicast 224.2.127.254 from 193.233.7.82 dev lo \

src 193.233.7.65 realms inr.ac/cosmos

cache <mc> iif eth0 Oifs: eth1 pimreg

kuznet@amber:~ $

This route differs from the ones seen before. It contains a “normal” part and
a “multicast” part. The normal part is used to deliver (or not to deliver) the
packet to local IP listeners. In this case the router is not a member of this
group, so that route has no local flag and only forwards packets. The output
device for such entries is always loopback. The multicast part consists of an
additional Oifs: list showing the output interfaces.

It is time for a more complicated example. Let us add an invalid gatewayed route
for a destination which is really directly connected:

netadm@alisa:~ # ip route add 193.233.7.98 via 193.233.7.254

netadm@alisa:~ # ip route get 193.233.7.98

193.233.7.98 via 193.233.7.254 dev eth0 src 193.233.7.90

cache mtu 1500 rtt 3072

netadm@alisa:~ #

and probe it with ping:

netadm@alisa:~ # ping -n 193.233.7.98

PING 193.233.7.98 (193.233.7.98) from 193.233.7.90 : 56 data bytes

From 193.233.7.254: Redirect Host(New nexthop: 193.233.7.98)

64 bytes from 193.233.7.98: icmp_seq=0 ttl=255 time=3.5 ms

From 193.233.7.254: Redirect Host(New nexthop: 193.233.7.98)

64 bytes from 193.233.7.98: icmp_seq=1 ttl=255 time=2.2 ms

64 bytes from 193.233.7.98: icmp_seq=2 ttl=255 time=0.4 ms

iproute2-ss020116 35

64 bytes from 193.233.7.98: icmp_seq=3 ttl=255 time=0.4 ms

64 bytes from 193.233.7.98: icmp_seq=4 ttl=255 time=0.4 ms

^C

--- 193.233.7.98 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.4/1.3/3.5 ms

netadm@alisa:~ #

What happened? Router 193.233.7.254 understood that we have a much better
path to the destination and sent us an ICMP redirect message. We may retry
ip route get to see what we have in the routing tables now:

netadm@alisa:~ # ip route get 193.233.7.98

193.233.7.98 dev eth0 src 193.233.7.90

cache <redirected> mtu 1500 rtt 3072

netadm@alisa:~ #

8 ip rule — routing policy database management

Abbreviations: rule, ru.

Object: rules in the routing policy database control the route selection algorithm.
Classic routing algorithms used in the Internet make routing decisions based only

on the destination address of packets (and in theory, but not in practice, on the TOS
field). The seminal review of classic routing algorithms and their modifications can
be found in [3].

In some circumstances we want to route packets differently depending not only
on destination addresses, but also on other packet fields: source address, IP protocol,
transport protocol ports or even packet payload. This task is called “policy routing”.

NB. “policy routing” 6= “routing policy”.
“policy routing” = “cunning routing”.
“routing policy” = “routing tactics” or “routing plan”.

To solve this task, the conventional destination based routing table, ordered ac-
cording to the longest match rule, is replaced with a “routing policy database” (or
RPDB), which selects routes by executing some set of rules. The rules may have
lots of keys of different natures and therefore they have no natural ordering, but one
imposed by the administrator. Linux-2.2 RPDB is a linear list of rules ordered by
numeric priority value. RPDB explicitly allows matching a few packet fields:

• packet source address.

• packet destination address.

36 IP Command Reference

• TOS.

• incoming interface (which is packet metadata, rather than a packet field).

Matching IP protocols and transport ports is also possible, indirectly, via ipchains,
by exploiting their ability to mark some classes of packets with fwmark. Therefore,
fwmark is also included in the set of keys checked by rules.

Each policy routing rule consists of a selector and an action predicate. The RPDB
is scanned in the order of increasing priority. The selector of each rule is applied to
{source address, destination address, incoming interface, tos, fwmark} and, if the
selector matches the packet, the action is performed. The action predicate may
return with success. In this case, it will either give a route or failure indication and
the RPDB lookup is terminated. Otherwise, the RPDB program continues on the
next rule.

What is the action, semantically? The natural action is to select the nexthop and
the output device. This is what Cisco IOS [5] does. Let us call it “match & set”.
The Linux-2.2 approach is more flexible. The action includes lookups in destination-
based routing tables and selecting a route from these tables according to the classic
longest match algorithm. The “match & set” approach is the simplest case of the
Linux one. It is realized when a second level routing table contains a single default
route. Recall that Linux-2.2 supports multiple tables managed with the ip route

command, described in the previous section.
At startup time the kernel configures the default RPDB consisting of three rules:

1. Priority: 0, Selector: match anything, Action: lookup routing table local (ID
255). The local table is a special routing table containing high priority control
routes for local and broadcast addresses.

Rule 0 is special. It cannot be deleted or overridden.

2. Priority: 32766, Selector: match anything, Action: lookup routing table main

(ID 254). The main table is the normal routing table containing all non-policy
routes. This rule may be deleted and/or overridden with other ones by the
administrator.

3. Priority: 32767, Selector: match anything, Action: lookup routing table default
(ID 253). The default table is empty. It is reserved for some post-processing
if no previous default rules selected the packet. This rule may also be deleted.

Do not confuse routing tables with rules: rules point to routing tables, several rules
may refer to one routing table and some routing tables may have no rules pointing to
them. If the administrator deletes all the rules referring to a table, the table is not
used, but it still exists and will disappear only after all the routes contained in it are
deleted.

iproute2-ss020116 37

Rule attributes: Each RPDB entry has additional attributes. F.e. each rule has
a pointer to some routing table. NAT and masquerading rules have an attribute
to select new IP address to translate/masquerade. Besides that, rules have some
optional attributes, which routes have, namely realms. These values do not override
those contained in the routing tables. They are only used if the route did not select
any attributes.

Rule types: The RPDB may contain rules of the following types:

• unicast — the rule prescribes to return the route found in the routing table
referenced by the rule.

• blackhole — the rule prescribes to silently drop the packet.

• unreachable — the rule prescribes to generate a “Network is unreachable”
error.

• prohibit — the rule prescribes to generate “Communication is administratively
prohibited” error.

• nat — the rule prescribes to translate the source address of the IP packet into
some other value. More about NAT is in Appendix C, p.50.

Commands: add, delete and show (or list).

8.1 ip rule add — insert a new rule
ip rule delete — delete a rule

Abbreviations: add, a; delete, del, d.

Arguments:

• type TYPE (default)

— the type of this rule. The list of valid types was given in the previous
subsection.

• from PREFIX

— select the source prefix to match.

• to PREFIX

— select the destination prefix to match.

38 IP Command Reference

• iif NAME

— select the incoming device to match. If the interface is loopback, the rule only
matches packets originating from this host. This means that you may create
separate routing tables for forwarded and local packets and, hence, completely
segregate them.

• tos TOS or dsfield TOS

— select the TOS value to match.

• fwmark MARK

— select the fwmark value to match.

• priority PREFERENCE

— the priority of this rule. Each rule should have an explicitly set unique

priority value.

NB. Really, for historical reasons ip rule add does not require a priority value and
allows them to be non-unique. If the user does not supplied a priority, it is selected
by the kernel. If the user creates a rule with a priority value that already exists, the
kernel does not reject the request. It adds the new rule before all old rules of the same
priority.

It is mistake in design, no more. And it will be fixed one day, so do not rely on this
feature. Use explicit priorities.

• table TABLEID

— the routing table identifier to lookup if the rule selector matches.

• realms FROM/TO

— Realms to select if the rule matched and the routing table lookup succeeded.
Realm TO is only used if the route did not select any realm.

• nat ADDRESS

— The base of the IP address block to translate (for source addresses). The
ADDRESS may be either the start of the block of NAT addresses (selected by
NAT routes) or in linux-2.2 a local host address (or even zero). In the last
case the router does not translate the packets, but masquerades them to this
address; this feature disappered in 2.4. More about NAT is in Appendix C,
p.50.

Warning: Changes to the RPDB made with these commands do not become active
immediately. It is assumed that after a script finishes a batch of updates, it flushes
the routing cache with ip route flush cache.

iproute2-ss020116 39

Examples:

• Route packets with source addresses from 192.203.80/24 according to routing
table inr.ruhep:

ip ru add from 192.203.80.0/24 table inr.ruhep prio 220

• Translate packet source address 193.233.7.83 into 192.203.80.144 and route it
according to table #1 (actually, it is inr.ruhep):

ip ru add from 193.233.7.83 nat 192.203.80.144 table 1 prio 320

• Delete the unused default rule:

ip ru del prio 32767

8.2 ip rule show — list rules

Abbreviations: show, list, sh, ls, l.

Arguments: Good news, this is one command that has no arguments.

Output format:

kuznet@amber:~ $ ip ru ls

0: from all lookup local

200: from 192.203.80.0/24 to 193.233.7.0/24 lookup main

210: from 192.203.80.0/24 to 192.203.80.0/24 lookup main

220: from 192.203.80.0/24 lookup inr.ruhep realms inr.ruhep/radio-msu

300: from 193.233.7.83 to 193.233.7.0/24 lookup main

310: from 193.233.7.83 to 192.203.80.0/24 lookup main

320: from 193.233.7.83 lookup inr.ruhep map-to 192.203.80.144

32766: from all lookup main

kuznet@amber:~ $

In the first column is the rule priority value followed by a colon. Then the selectors
follow. Each key is prefixed with the same keyword that was used to create the rule.

The keyword lookup is followed by a routing table identifier, as it is recorded in
the file /etc/iproute2/rt_tables.

If the rule does NAT (f.e. rule #320), it is shown by the keyword map-to followed
by the start of the block of addresses to map.

The sense of this example is pretty simple. The prefixes 192.203.80.0/24 and
193.233.7.0/24 form the internal network, but they are routed differently when the
packets leave it. Besides that, the host 193.233.7.83 is translated into another prefix
to look like 192.203.80.144 when talking to the outer world.

40 IP Command Reference

9 ip maddress — multicast addresses management

Object: maddress objects are multicast addresses.

Commands: add, delete, show (or list).

9.1 ip maddress show — list multicast addresses

Abbreviations: show, list, sh, ls, l.

Arguments:

• dev NAME (default)

— the device name.

Output format:

kuznet@alisa:~ $ ip maddr ls dummy

2: dummy

link 33:33:00:00:00:01

link 01:00:5e:00:00:01

inet 224.0.0.1 users 2

inet6 ff02::1

kuznet@alisa:~ $

The first line of the output shows the interface index and its name. Then the
multicast address list follows. Each line starts with the protocol identifier. The word
link denotes a link layer multicast addresses.

If a multicast address has more than one user, the number of users is shown after
the users keyword.

One additional feature not present in the example above is the static flag, which
indicates that the address was joined with ip maddr add. See the following subsec-
tion.

9.2 ip maddress add — add a multicast address
ip maddress delete — delete a multicast address

Abbreviations: add, a; delete, del, d.

Description: these commands attach/detach a static link layer multicast address
to listen on the interface. Note that it is impossible to join protocol multicast groups
statically. This command only manages link layer addresses.

iproute2-ss020116 41

Arguments:

• address LLADDRESS (default)

— the link layer multicast address.

• dev NAME

— the device to join/leave this multicast address.

Example: Let us continue with the example from the previous subsection.

netadm@alisa:~ # ip maddr add 33:33:00:00:00:01 dev dummy

netadm@alisa:~ # ip -0 maddr ls dummy

2: dummy

link 33:33:00:00:00:01 users 2 static

link 01:00:5e:00:00:01

netadm@alisa:~ # ip maddr del 33:33:00:00:00:01 dev dummy

NB. Neither ip nor the kernel check for multicast address validity. Particularly, this means
that you can try to load a unicast address instead of a multicast address. Most drivers will
ignore such addresses, but several (f.e. Tulip) will intern it to their on-board filter. The
effects may be strange. Namely, the addresses become additional local link addresses and, if
you loaded the address of another host to the router, wait for duplicated packets on the wire.
It is not a bug, but rather a hole in the API and intra-kernel interfaces. This feature is really
more useful for traffic monitoring, but using it with Linux-2.2 you have to be sure that the
host is not a router and, especially, that it is not a transparent proxy or masquerading agent.

10 ip mroute — multicast routing cache manage-

ment

Abbreviations: mroute, mr.

Object: mroute objects are multicast routing cache entries created by a user level
mrouting daemon (f.e. pimd or mrouted).

Due to the limitations of the current interface to the multicast routing engine, it is
impossible to change mroute objects administratively, so we may only display them.
This limitation will be removed in the future.

Commands: show (or list).

10.1 ip mroute show — list mroute cache entries

Abbreviations: show, list, sh, ls, l.

42 IP Command Reference

Arguments:

• to PREFIX (default)

— the prefix selecting the destination multicast addresses to list.

• iif NAME

— the interface on which multicast packets are received.

• from PREFIX

— the prefix selecting the IP source addresses of the multicast route.

Output format:

kuznet@amber:~ $ ip mroute ls

(193.232.127.6, 224.0.1.39) Iif: unresolved

(193.232.244.34, 224.0.1.40) Iif: unresolved

(193.233.7.65, 224.66.66.66) Iif: eth0 Oifs: pimreg

kuznet@amber:~ $

Each line shows one (S,G) entry in the multicast routing cache, where S is the
source address and G is the multicast group. Iif is the interface on which multicast
packets are expected to arrive. If the word unresolved is there instead of the interface
name, it means that the routing daemon still hasn’t resolved this entry. The keyword
oifs is followed by a list of output interfaces, separated by spaces. If a multicast
routing entry is created with non-trivial TTL scope, administrative distances are
appended to the device names in the oifs list.

Statistics: The -statistics option also prints the number of packets and bytes
forwarded along this route and the number of packets that arrived on the wrong
interface, if this number is not zero.

kuznet@amber:~ $ ip -s mr ls 224.66/16

(193.233.7.65, 224.66.66.66) Iif: eth0 Oifs: pimreg

9383 packets, 300256 bytes

kuznet@amber:~ $

11 ip tunnel — tunnel configuration

Abbreviations: tunnel, tunl.

Object: tunnel objects are tunnels, encapsulating packets in IPv4 packets and
then sending them over the IP infrastructure.

iproute2-ss020116 43

Commands: add, delete, change, show (or list).

See also: A more informal discussion of tunneling over IP and the ip tunnel com-
mand can be found in [6].

11.1 ip tunnel add — add a new tunnel

ip tunnel change — change an existing tunnel
ip tunnel delete — destroy a tunnel

Abbreviations: add, a; change, chg; delete, del, d.

Arguments:

• name NAME (default)

— select the tunnel device name.

• mode MODE

— set the tunnel mode. Three modes are currently available: ipip, sit and
gre.

• remote ADDRESS

— set the remote endpoint of the tunnel.

• local ADDRESS

— set the fixed local address for tunneled packets. It must be an address on
another interface of this host.

• ttl N

— set a fixed TTL N on tunneled packets. N is a number in the range 1–255.
0 is a special value meaning that packets inherit the TTL value. The default
value is: inherit.

• tos T or dsfield T

— set a fixed TOS T on tunneled packets. The default value is: inherit.

• dev NAME

— bind the tunnel to the device NAME so that tunneled packets will only be
routed via this device and will not be able to escape to another device when
the route to endpoint changes.

44 IP Command Reference

• nopmtudisc

— disable Path MTU Discovery on this tunnel. It is enabled by default. Note
that a fixed ttl is incompatible with this option: tunnelling with a fixed ttl
always makes pmtu discovery.

• key K, ikey K, okey K

— (only GRE tunnels) use keyed GRE with key K. K is either a number or an
IP address-like dotted quad. The key parameter sets the key to use in both
directions. The ikey and okey parameters set different keys for input and
output.

• csum, icsum, ocsum

— (only GRE tunnels) generate/require checksums for tunneled packets. The
ocsum flag calculates checksums for outgoing packets. The icsum flag requires
that all input packets have the correct checksum. The csum flag is equivalent
to the combination “icsum ocsum”.

• seq, iseq, oseq

— (only GRE tunnels) serialize packets. The oseq flag enables sequencing of
outgoing packets. The iseq flag requires that all input packets are serialized.
The seq flag is equivalent to the combination “iseq oseq”.

NB. I think this option does not work. At least, I did not test it, did not debug it and
do not even understand how it is supposed to work or for what purpose Cisco planned
to use it. Do not use it.

Example: Create a pointopoint IPv6 tunnel with maximal TTL of 32.

netadm@amber:~ # ip tunl add Cisco mode sit remote 192.31.7.104 \

local 192.203.80.142 ttl 32

11.2 ip tunnel show — list tunnels

Abbreviations: show, list, sh, ls, l.

Arguments: None.

Output format:

kuznet@amber:~ $ ip tunl ls Cisco

Cisco: ipv6/ip remote 192.31.7.104 local 192.203.80.142 ttl 32

kuznet@amber:~ $

iproute2-ss020116 45

The line starts with the tunnel device name followed by a colon. Then the tunnel
mode follows. The parameters of the tunnel are listed with the same keywords that
were used when creating the tunnel.

Statistics:

kuznet@amber:~ $ ip -s tunl ls Cisco

Cisco: ipv6/ip remote 192.31.7.104 local 192.203.80.142 ttl 32

RX: Packets Bytes Errors CsumErrs OutOfSeq Mcasts

12566 1707516 0 0 0 0

TX: Packets Bytes Errors DeadLoop NoRoute NoBufs

13445 1879677 0 0 0 0

kuznet@amber:~ $

Essentially, these numbers are the same as the numbers printed with ip -s link

show (sec.4.2, p.7) but the tags are different to reflect that they are tunnel specific.

• CsumErrs — the total number of packets dropped because of checksum failures
for a GRE tunnel with checksumming enabled.

• OutOfSeq — the total number of packets dropped because they arrived out of
sequence for a GRE tunnel with serialization enabled.

• Mcasts — the total number of multicast packets received on a broadcast GRE
tunnel.

• DeadLoop — the total number of packets which were not transmitted because
the tunnel is looped back to itself.

• NoRoute — the total number of packets which were not transmitted because
there is no IP route to the remote endpoint.

• NoBufs — the total number of packets which were not transmitted because the
kernel failed to allocate a buffer.

12 ip monitor and rtmon — state monitoring

The ip utility can monitor the state of devices, addresses and routes continuously.
This option has a slightly different format. Namely, the monitor command is the
first in the command line and then the object list follows:

ip monitor [file FILE] [all | OBJECT-LIST]

46 IP Command Reference

OBJECT-LIST is the list of object types that we want to monitor. It may contain link,
address and route. If no file argument is given, ip opens RTNETLINK, listens
on it and dumps state changes in the format described in previous sections.

If a file name is given, it does not listen on RTNETLINK, but opens the file
containing RTNETLINK messages saved in binary format and dumps them. Such
a history file can be generated with the rtmon utility. This utility has a command
line syntax similar to ip monitor. Ideally, rtmon should be started before the first
network configuration command is issued. F.e. if you insert:

rtmon file /var/log/rtmon.log

in a startup script, you will be able to view the full history later.
Certainly, it is possible to start rtmon at any time. It prepends the history with

the state snapshot dumped at the moment of starting.

13 Route realms and policy propagation, rtacct

On routers using OSPF ASE or, especially, the BGP protocol, routing tables may be
huge. If we want to classify or to account for the packets per route, we will have to
keep lots of information. Even worse, if we want to distinguish the packets not only
by their destination, but also by their source, the task gets quadratic complexity and
its solution is physically impossible.

One approach to propagating the policy from routing protocols to the forwarding
engine has been proposed in [8]. Essentially, Cisco Policy Propagation via BGP
is based on the fact that dedicated routers all have the RIB (Routing Information
Base) close to the forwarding engine, so policy routing rules can check all the route
attributes, including ASPATH information and community strings.

The Linux architecture, splitting the RIB (maintained by a user level daemon) and
the kernel based FIB (Forwarding Information Base), does not allow such a simple
approach.

It is to our fortune because there is another solution which allows even more
flexible policy and richer semantics.

Namely, routes can be clustered together in user space, based on their attributes.
F.e. a BGP router knows route ASPATH, its community; an OSPF router knows the
route tag or its area. The administrator, when adding routes manually, also knows
their nature. Providing that the number of such aggregates (we call them realms)
is low, the task of full classification both by source and destination becomes quite
manageable.

So each route may be assigned to a realm. It is assumed that this identification
is made by a routing daemon, but static routes can also be handled manually with
ip route (see sec.7, p.21).

NB. There is a patch to gated, allowing classification of routes to realms with all the set of
policy rules implemented in gated: by prefix, by ASPATH, by origin, by tag etc.

iproute2-ss020116 47

To facilitate the construction (f.e. in case the routing daemon is not aware of
realms), missing realms may be completed with routing policy rules, see sec. 8, p.35.

For each packet the kernel calculates a tuple of realms: source realm and destina-
tion realm, using the following algorithm:

1. If the route has a realm, the destination realm of the packet is set to it.

2. If the rule has a source realm, the source realm of the packet is set to it. If the
destination realm was not inherited from the route and the rule has a destination
realm, it is also set.

3. If at least one of the realms is still unknown, the kernel finds the reversed route
to the source of the packet.

4. If the source realm is still unknown, get it from the reversed route.

5. If one of the realms is still unknown, swap the realms of reversed routes and
apply step 2 again.

After this procedure is completed we know what realm the packet arrived from
and the realm where it is going to propagate to. If some of the realms are unknown,
they are initialized to zero (or realm unknown).

The main application of realms is the TC route classifier [7], where they are
used to help assign packets to traffic classes, to account, police and schedule them
according to this classification.

A much simpler but still very useful application is incoming packet accounting by
realms. The kernel gathers a packet statistics summary which can be viewed with
the rtacct utility.

kuznet@amber:~ $ rtacct russia

Realm BytesTo PktsTo BytesFrom PktsFrom

russia 20576778 169176 47080168 153805

kuznet@amber:~ $

This shows that this router received 153805 packets from the realm russia and
forwarded 169176 packets to russia. The realm russia consists of routes with AS-
PATHs not leaving Russia.

Note that locally originating packets are not accounted here, rtacct shows incom-
ing packets only. Using the route classifier (see [7]) you can get even more detailed
accounting information about outgoing packets, optionally summarizing traffic not
only by source or destination, but by any pair of source and destination realms.

48 IP Command Reference

References

[1] T. Narten, E. Nordmark, W. Simpson. “Neighbor Discovery for IP Version 6
(IPv6)”, RFC-2461.

[2] S. Thomson, T. Narten. “IPv6 Stateless Address Autoconfiguration”, RFC-2462.

[3] F. Baker. “Requirements for IP Version 4 Routers”, RFC-1812.

[4] R. T. Braden. “Requirements for Internet hosts — communication layers”, RFC-
1122.

[5] “Cisco IOS Release 12.0 Network Protocols Command Reference, Part 1” and
“Cisco IOS Release 12.0 Quality of Service Solutions Configuration Guide: Con-
figuring Policy-Based Routing”,
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120.

[6] A. N. Kuznetsov. “Tunnels over IP in Linux-2.2”,
In: ftp://ftp.inr.ac.ru/ip-routing/iproute2-current.tar.gz.

[7] A. N. Kuznetsov. “TC Command Reference”,
In: ftp://ftp.inr.ac.ru/ip-routing/iproute2-current.tar.gz.

[8] “Cisco IOS Release 12.0 Quality of Service Solutions Configuration Guide: Con-
figuring QoS Policy Propagation via Border Gateway Protocol”,
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120.

[9] R. Droms. “Dynamic Host Configuration Protocol.”, RFC-2131

A Source address selection

When a host creates an IP packet, it must select some source address. Correct source
address selection is a critical procedure, because it gives the receiver the information
needed to deliver a reply. If the source is selected incorrectly, in the best case,
the backward path may appear different to the forward one which is harmful for
performance. In the worst case, when the addresses are administratively scoped, the
reply may be lost entirely.

Linux-2.2 selects source addresses using the following algorithm:

• The application may select a source address explicitly with bind(2) syscall
or supplying it to sendmsg(2) via the ancillary data object IP_PKTINFO. In
this case the kernel only checks the validity of the address and never tries to
“improve” an incorrect user choice, generating an error instead.

iproute2-ss020116 49

NB. Never say “Never”. The sysctl option ip_dynaddr breaks this axiom. It has been
made deliberately with the purpose of automatically reselecting the address on hosts
with dynamic dial-out interfaces. However, this hack must not be used on multihomed
hosts and especially on routers: it would break them.

• Otherwise, IP routing tables can contain an explicit source address hint for this
destination. The hint is set with the src parameter to the ip route command,
sec.7, p.21.

• Otherwise, the kernel searches through the list of addresses attached to the
interface through which the packets will be routed. The search strategies are
different for IP and IPv6. Namely:

– IPv6 searches for the first valid, not deprecated address with the same
scope as the destination.

– IP searches for the first valid address with a scope wider than the scope
of the destination but it prefers addresses which fall to the same subnet
as the nexthop of the route to the destination. Unlike IPv6, the scopes of
IPv4 destinations are not encoded in their addresses but are supplied in
routing tables instead (the scope parameter to the ip route command,
sec.7, p.21).

• Otherwise, if the scope of the destination is link or host, the algorithm fails
and returns a zero source address.

• Otherwise, all interfaces are scanned to search for an address with an appropri-
ate scope. The loopback device lo is always the first in the search list, so that
if an address with global scope (not 127.0.0.1!) is configured on loopback, it is
always preferred.

B Proxy ARP/NDISC

Routers may answer ARP/NDISC solicitations on behalf of other hosts. In Linux-2.2
proxy ARP on an interface may be enabled by setting the kernel sysctl variable
/proc/sys/net/ipv4/conf/<dev>/proxy_arp to 1. After this, the router starts to
answer ARP requests on the interface <dev>, provided the route to the requested
destination does not go back via the same device.

The variable /proc/sys/net/ipv4/conf/all/proxy_arp enables proxy ARP on
all the IP devices.

However, this approach fails in the case of IPv6 because the router must join the
solicited node multicast address to listen for the corresponding NDISC queries. It
means that proxy NDISC is possible only on a per destination basis.

50 IP Command Reference

Logically, proxy ARP/NDISC is not a kernel task. It can easily be implemented
in user space. However, similar functionality was present in BSD kernels and in
Linux-2.0, so we have to preserve it at least to the extent that is standardized in
BSD.

NB. Linux-2.0 ARP had a feature called subnet proxy ARP. It is replaced with the sysctl
flag in Linux-2.2.

The ip utility provides a way to manage proxy ARP/NDISC with the ip neigh

command, namely:

ip neigh add proxy ADDRESS [dev NAME]

adds a new proxy ARP/NDISC record and

ip neigh del proxy ADDRESS [dev NAME]

deletes it.
If the name of the device is not given, the router will answer solicitations for

address ADDRESS on all devices, otherwise it will only serve the device NAME. Even if
the proxy entry is created with ip neigh, the router will not answer a query if the
route to the destination goes back via the interface from which the solicitation was
received.

It is important to emphasize that proxy entries have no parameters other than
these (IP/IPv6 address and optional device). Particularly, the entry does not store
any link layer address. It always advertises the station address of the interface on
which it sends advertisements (i.e. it’s own station address).

C Route NAT status

NAT (or “Network Address Translation”) remaps some parts of the IP address space
into other ones. Linux-2.2 route NAT is supposed to be used to facilitate policy
routing by rewriting addresses to other routing domains or to help while renumbering
sites to another prefix.

What it is not: It is necessary to emphasize that it is not supposed to be used
to compress address space or to split load. This is not missing functionality but a
design principle. Route NAT is stateless. It does not hold any state about translated
sessions. This means that it handles any number of sessions flawlessly. But it also
means that it is static. It cannot detect the moment when the last TCP client stops
using an address. For the same reason, it will not help to split load between several
servers.

NB. It is a pretty commonly held belief that it is useful to split load between several servers
with NAT. This is a mistake. All you get from this is the requirement that the router keep
the state of all the TCP connections going via it. Well, if the router is so powerful, run apache
on it. 8)

iproute2-ss020116 51

The second feature: it does not touch packet payload, does not try to “improve”
broken protocols by looking through its data and mangling it. It mangles IP ad-
dresses, only IP addresses and nothing but IP addresses. This also, is not missing
any functionality.

To resume: if you need to compress address space or keep active FTP clients
happy, your choice is not route NAT but masquerading, port forwarding, NAPT etc.

NB. By the way, you may also want to look at http://www.suse.com/m̃ha/HyperNews/get/linux-
ip-nat.html

How it works. Some part of the address space is reserved for dummy addresses
which will look for all the world like some host addresses inside your network. No
other hosts may use these addresses, however other routers may also be configured to
translate them.

NB. A great advantage of route NAT is that it may be used not only in stub networks but
in environments with arbitrarily complicated structure. It does not firewall, it forwards.

These addresses are selected by the ip route command (sec.7.1, p.23). F.e.

ip route add nat 192.203.80.144 via 193.233.7.83

states that the single address 192.203.80.144 is a dummy NAT address. For all the
world it looks like a host address inside our network. For neighbouring hosts and
routers it looks like the local address of the translating router. The router answers
ARP for it, advertises this address as routed via it, et al . When the router receives
a packet destined for 192.203.80.144, it replaces this address with 193.233.7.83 which
is the address of some real host and forwards the packet. If you need to remap blocks
of addresses, you may use a command like:

ip route add nat 192.203.80.192/26 via 193.233.7.64

This command will map a block of 63 addresses 192.203.80.192-255 to 193.233.7.64-
127.

When an internal host (193.233.7.83 in the example above) sends something to
the outer world and these packets are forwarded by our router, it should translate
the source address 193.233.7.83 into 192.203.80.144. This task is solved by setting a
special policy rule (sec.8.1, p.37):

ip rule add prio 320 from 193.233.7.83 nat 192.203.80.144

This rule says that the source address 193.233.7.83 should be translated into 192.203.80.144
before forwarding. It is important that the address after the nat keyword is some
NAT address, declared by ip route add nat. If it is just a random address the
router will not map to it.

NB. The exception is when the address is a local address of this router (or 0.0.0.0) and
masquerading is configured in the linux-2.2 kernel. In this case the router will masquerade
the packets as this address. If 0.0.0.0 is selected, the result is equivalent to one obtained with

52 IP Command Reference

firewalling rules. Otherwise, you have the way to order Linux to masquerade to this fixed
address. NAT mechanism used in linux-2.4 is more flexible than masquerading, so that this
feature has lost meaning and disabled.

If the network has non-trivial internal structure, it is useful and even necessary
to add rules disabling translation when a packet does not leave this network. Let us
return to the example from sec.8.2 (p.39).

300: from 193.233.7.83 to 193.233.7.0/24 lookup main

310: from 193.233.7.83 to 192.203.80.0/24 lookup main

320: from 193.233.7.83 lookup inr.ruhep map-to 192.203.80.144

This block of rules causes normal forwarding when packets from 193.233.7.83 do not
leave networks 193.233.7/24 and 192.203.80/24. Also, if the inr.ruhep table does
not contain a route to the destination (which means that the routing domain owning
addresses from 192.203.80/24 is dead), no translation will occur. Otherwise, the
packets are translated.

How to only translate selected ports: If you only want to translate selected
ports (f.e. http) and leave the rest intact, you may use ipchains to fwmark a class of
packets. Suppose you did and all the packets from 193.233.7.83 destined for port 80
are marked with marker 0x1234 in input fwchain. In this case you may replace rule
#320 with:

320: from 193.233.7.83 fwmark 1234 lookup main map-to 192.203.80.144

and translation will only be enabled for outgoing http requests.

D Example: minimal host setup

The following script gives an example of a fault safe setup of IP (and IPv6, if it is
compiled into the kernel) in the common case of a node attached to a single broadcast
network. A more advanced script, which may be used both on multihomed hosts and
on routers, is described in the following section.

The utilities used in the script may be found in the directory ftp://ftp.inr.ac.ru/ip-
routing/:

1. ip — package iproute2.

2. arping — package iputils.

3. rdisc — package iputils.

NB. It also refers to a DHCP client, dhcpcd. I should refrain from recommending a good
DHCP client to use. All that I can say is that ISC dhcp-2.0b1pl6 patched with the patch
that can be found in the dhcp.bootp.rarp subdirectory of the same ftp site does work, at
least on Ethernet and Token Ring.

iproute2-ss020116 53

#! /bin/bash

Usage: ifone ADDRESS[/PREFIX-LENGTH] [DEVICE]

Parameters:
$1 — Static IP address, optionally followed by prefix length.
$2 — Device name. If it is missing, eth0 is asssumed.
F.e. ifone 193.233.7.90

dev=$2

: ${dev:=eth0}

ipaddr=

Parse IP address, splitting prefix length.

if ["$1" != ""]; then

ipaddr=${1%/*}

if ["$1" != "$ipaddr"]; then

pfxlen=${1#*/}

fi

: ${pfxlen:=24}

fi

pfx="${ipaddr}/${pfxlen}"

Step 0 — enable loopback.
#
This step is necessary on any networked box before attempt
to configure any other device.

ip link set up dev lo

ip addr add 127.0.0.1/8 dev lo brd + scope host

IPv6 autoconfigure themself on loopback.
#
If user gave loopback as device, we add the address as alias and exit.

if ["$dev" = "lo"]; then

if ["$ipaddr" != "" -a "$ipaddr" != "127.0.0.1"]; then

ip address add $ipaddr dev $dev

exit $?

fi

exit 0

fi

Step 1 — enable device $dev

54 IP Command Reference

if ! ip link set up dev $dev ; then

echo "Cannot enable interface $dev. Aborting." 1>&2

exit 1

fi

The interface is UP. IPv6 started stateless autoconfiguration itself,
and its configuration finishes here. However,
IP still needs some static preconfigured address.

if ["$ipaddr" = ""]; then

echo "No address for $dev is configured, trying DHCP..." 1>&2

dhcpcd

exit $?

fi

Step 2 — IP Duplicate Address Detection [9].
Send two probes and wait for result for 3 seconds.
If the interface opens slower f.e. due to long media detection,
you want to increase the timeout.

if ! arping -q -c 2 -w 3 -D -I $dev $ipaddr ; then

echo "Address $ipaddr is busy, trying DHCP..." 1>&2

dhcpcd

exit $?

fi

OK, the address is unique, we may add it on the interface.
#
Step 3 — Configure the address on the interface.

if ! ip address add $pfx brd + dev $dev; then

echo "Failed to add $pfx on $dev, trying DHCP..." 1>&2

dhcpcd

exit $?

fi

Step 4 — Announce our presence on the link.

arping -A -c 1 -I $dev $ipaddr

noarp=$?

(sleep 2;

arping -U -c 1 -I $dev $ipaddr) >& /dev/null </dev/null &

iproute2-ss020116 55

Step 5 (optional) — Add some control routes.
#
1. Prohibit link local multicast addresses.
2. Prohibit link local (alias, limited) broadcast.
3. Add default multicast route.

ip route add unreachable 224.0.0.0/24

ip route add unreachable 255.255.255.255

if [‘ip link ls $dev | grep -c MULTICAST‘ -ge 1]; then

ip route add 224.0.0.0/4 dev $dev scope global

fi

Step 6 — Add fallback default route with huge metric.
If a proxy ARP server is present on the interface, we will be
able to talk to all the Internet without further configuration.
It is not so cheap though and we still hope that this route
will be overridden by more correct one by rdisc.
Do not make this step if the device is not ARPable,
because dead nexthop detection does not work on them.

if ["$noarp" = "0"]; then

ip ro add default dev $dev metric 30000 scope global

fi

Step 7 — Restart router discovery and exit.

killall -HUP rdisc || rdisc -fs

exit 0

E Example: ifcfg — interface address manage-

ment

This is a simplistic script replacing one option of ifconfig, namely, IP address man-
agement. It not only adds addresses, but also carries out Duplicate Address De-
tection [9], sends unsolicited ARP to update the caches of other hosts sharing the
interface, adds some control routes and restarts Router Discovery when it is neces-
sary.

I strongly recommend using it instead of ifconfig both on hosts and on routers.

#! /bin/bash

56 IP Command Reference

Usage: ifcfg DEVICE[:ALIAS] [add|del] ADDRESS[/LENGTH] [PEER]

Parameters:
—Device name. It may have alias suffix, separated by colon.
—Command: add, delete or stop.
—IP address, optionally followed by prefix length.
—Optional peer address for pointopoint interfaces.
F.e. ifcfg eth0 193.233.7.90/24

This function determines, whether it is router or host.
It returns 0, if the host is apparently not router.

CheckForwarding () {

local sbase fwd

sbase=/proc/sys/net/ipv4/conf

fwd=0

if [-d $sbase]; then

for dir in $sbase/*/forwarding; do

fwd=$[$fwd + ‘cat $dir‘]

done

else

fwd=2

fi

return $fwd

}

This function restarts Router Discovery.

RestartRDISC () {

killall -HUP rdisc || rdisc -fs

}

Calculate ABC ”natural” mask length
Arg: $1 = dotquad address

ABCMaskLen () {

local class;

class=${1%%.*}

if [$class -eq 0 -o $class -ge 224]; then return 0

elif [$class -ge 192]; then return 24

elif [$class -ge 128]; then return 16

else return 8 ; fi

}

MAIN()
#
Strip alias suffix separated by colon.

iproute2-ss020116 57

label="label $1"

ldev=$1

dev=${1%:*}

if ["$dev" = "" -o "$1" = "help"]; then

echo "Usage: ifcfg DEV [[add|del [ADDR[/LEN]] [PEER] | stop]" 1>&2

echo " add - add new address" 1>&2

echo " del - delete address" 1>&2

echo " stop - completely disable IP" 1>&2

exit 1

fi

shift

CheckForwarding

fwd=$?

Parse command. If it is “stop”, flush and exit.

deleting=0

case "$1" in

add) shift ;;

stop)

if ["$ldev" != "$dev"]; then

echo "Cannot stop alias $ldev" 1>&2

exit 1;

fi

ip -4 addr flush dev $dev $label || exit 1

if [$fwd -eq 0]; then RestartRDISC; fi

exit 0 ;;

del*)

deleting=1; shift ;;

*)

esac

Parse prefix, split prefix length, separated by slash.

ipaddr=

pfxlen=

if ["$1" != ""]; then

ipaddr=${1%/*}

if ["$1" != "$ipaddr"]; then

pfxlen=${1#*/}

fi

if ["$ipaddr" = ""]; then

58 IP Command Reference

echo "$1 is bad IP address." 1>&2

exit 1

fi

fi

shift

If peer address is present, prefix length is 32.
Otherwise, if prefix length was not given, guess it.

peer=$1

if ["$peer" != ""]; then

if ["$pfxlen" != "" -a "$pfxlen" != "32"]; then

echo "Peer address with non-trivial netmask." 1>&2

exit 1

fi

pfx="$ipaddr peer $peer"

else

if ["$pfxlen" = ""]; then

ABCMaskLen $ipaddr

pfxlen=$?

fi

pfx="$ipaddr/$pfxlen"

fi

if ["$ldev" = "$dev" -a "$ipaddr" != ""]; then

label=

fi

If deletion was requested, delete the address and restart RDISC

if [$deleting -ne 0]; then

ip addr del $pfx dev $dev $label || exit 1

if [$fwd -eq 0]; then RestartRDISC; fi

exit 0

fi

Start interface initialization.
#
Step 0 — enable device $dev

if ! ip link set up dev $dev ; then

echo "Error: cannot enable interface $dev." 1>&2

exit 1

fi

if ["$ipaddr" = ""]; then exit 0; fi

iproute2-ss020116 59

Step 1 — IP Duplicate Address Detection [9].
Send two probes and wait for result for 3 seconds.
If the interface opens slower f.e. due to long media detection,
you want to increase the timeout.

if ! arping -q -c 2 -w 3 -D -I $dev $ipaddr ; then

echo "Error: some host already uses address $ipaddr on $dev." 1>&2

exit 1

fi

OK, the address is unique. We may add it to the interface.
#
Step 2 — Configure the address on the interface.

if ! ip address add $pfx brd + dev $dev $label; then

echo "Error: failed to add $pfx on $dev." 1>&2

exit 1

fi

Step 3 — Announce our presence on the link

arping -q -A -c 1 -I $dev $ipaddr

noarp=$?

(sleep 2 ;

arping -q -U -c 1 -I $dev $ipaddr) >& /dev/null </dev/null &

Step 4 (optional) — Add some control routes.
#
1. Prohibit link local multicast addresses.
2. Prohibit link local (alias, limited) broadcast.
3. Add default multicast route.

ip route add unreachable 224.0.0.0/24 >& /dev/null

ip route add unreachable 255.255.255.255 >& /dev/null

if [‘ip link ls $dev | grep -c MULTICAST‘ -ge 1]; then

ip route add 224.0.0.0/4 dev $dev scope global >& /dev/null

fi

Step 5 — Add fallback default route with huge metric.
If a proxy ARP server is present on the interface, we will be
able to talk to all the Internet without further configuration.
Do not make this step on router or if the device is not ARPable.
because dead nexthop detection does not work on them.

60 IP Command Reference

if [$fwd -eq 0]; then

if [$noarp -eq 0]; then

ip ro append default dev $dev metric 30000 scope global

elif ["$peer" != ""]; then

if ping -q -c 2 -w 4 $peer ; then

ip ro append default via $peer dev $dev metric 30001

fi

fi

RestartRDISC

fi

exit 0

End of MAIN()

