

SMC lab platform
 Fall 2022

 David Morgan, instructor

A Virtual Machine for You

I have a VirtualBox virtual machine (VM). I wish to give you a copy. VirtualBox has a

method for doing so. I can "export" my VM. That produces a file. I did it, and named the

resultant file "fedora36-summer22.ova". We will use it in fall22. I wish to give you a

copy of this file. You can then use the "import" feature of your copy of VirtualBox. Then,

your VirtualBox will contain a copy of my VM for your use. fedora36-summer22.ova is

big (around 5.5G).

GETTING THE FILE

I put the fedora36-summer22.ova file on Google Drive. You can reach it via this link:

https://drive.google.com/drive/folders/1tFTKBkgVAzAaPWZKIFj11ljNIyDwoYZl

Please copy this link into a browser.

VERIFYING THE FILE

It is important that the file you receive be a correct, perfect copy of the one sent.

Ascertain that, by using a command or program that produces the SHA1 hash of the file.

For example try these command-line approaches:

in Windows' command box: certutil -hashfile <name of file>

in linux: sha1sum <name of file>

other linux-like platforms: sha1 <name of file> -or- shasum -a 1 <name of file>

Or do an internet search for other tools where you'll find suggestions like:

https://www.raymond.cc/blog/7-tools-verify-file-integrity-using-md5-sha1-hashes/

(Many people have 7-zip installed; it contains the capability.)

The sha1 hash value you get for the file must be:

bcead0547728906348033ebe8ae16f20b61149b4 fedora36-summer22.ova

If you don't get the above value for your file (it's wrong) repeat the download attempt

until you do. Don't proceed without having successfully verified the file.

IMPORT THE VM INTO VirtualBox

VirtualBox has an "Import Appliance" feature on its File menu:

Use it to specify and import fedora36-summer22.ova. As a result, a VM named fedora36-

summer22 will appear.

Important preliminary before using this machine. There needs to be a snapshot of this

machine named "base," reflecting its current, virgin state. (I may give you scripts that

create VMs for lab exercises by cloning this one, and that depend on the snapshot.)

Create and name "base" either via the graphical menus, or by running the command:

vboxmanage snapshot fedora36-summer22 take base

Virtual Machine Usage

fedora36-summer22 will be used as the basis for cloning multiple copies of itself. Some

exercises need only one VM, others as many as five. The ones with multiple VMs will

have them networked differently, in terms of topologies, interfaces, and addresses

[CS40 in Fall22, on the subject of operating systems, will make relatively limited use of these

scripts because most assignments can be done in a single machine, while the scripts generally

create and configure assignments that use multi-machine networks. CS70 in Fall22, because it is a

class on the subject of networking so will need multi-machine networks to work with, will make

more extensive use of these scripts.]

PROVIDED SCRIPTS

For each exercise I have provided 4-6 scripts that set the stage automatically, cloning and

connecting and addressing. (They’re on Google Drive.) The purpose of the scripts is to 1)

spare the student the setup steps, so the machine(s) and network come to you ready to

use, and 2) facilitate tearing down and starting over, if desired, at little cost.

Execute the scripts as the non-root user. Every lab exercise has its own set of scripts. The

sets are similar. They typically consist of these:

to start:

 vmconfigure-populate.bat (or .sh for bash, on linux or Apple)

 vmconfigure-construct-network.bat (if present)

 vmconfigure-guestOS-internal-settings.bat (if present) OR vmconfigure-poweron.bat

to end:

 vmconfigure-poweroff.bat

 vmconfigure-destroy.bat

Execution order is important. It should be done in the order shown.

vmconfigure-populate clones the needed number of VMs from the base "fedora36-

summer22" springboard machine. It is the physical equivalent of bringing some machines

and putting them on a table.

vmconfigure-construct-network does the equivalent of physically provisioning computers

with interfaces (NICs), bring some cables to the table, and plugging cables from certain

interfaces on some machine to certain ones on other machines, depending on how you

want things to be hooked up.

vmconfigure-guestOS-internal-settings does the equivalent of logging in to the machines

then running some commands on them. (The chosen commands are hostname, ifconfig,

and route.) Note these are commands belonging to the guest operating machine. The

previous scripts ran commands that belong to VirtualBox. This one runs commands, in

bash, that belong to linux or Apple (bash is the default shell, in both). Commands in the

guest can only be executed in the guest, requiring that it be booted up first. That is why

this script is an alternative to vmconfigure-poweron. The latter boots a machine and does

nothing further with it. This former boots it, and having done so operates it a bit to set its

hostname and/or configure its network. A ramification is that after VirtualBox powers on

a machine, the script inserts a delay before trying to execute guest commands. That is

because, exactly as with physical machines, though powering on is instantaneous booting

is not. It takes half a minute or a minute every time you turn on your laptop or phone.

You can't execute commands during that time, till the machine is booted. It's not ready

yet. In the case of VirtualBox, if you jump the gun and try to execute guest commands

before the guest has fully booted (impossible with a physical box), you will create error

messages for yourself. Therefore, when vmconfigure-guestOS-internal-settings reaches

its delay loop, let it delay. Be patient.

vmconfigure-poweroff turns the machines off. You can turn them on again, as you could

physically. If you want to do that, again run vmconfigure-guestOS-internal-settings (if

present) as some of the internal settings are transient and need to be set/reset each time

you turn a machine on.

vmconfigure-destroy gets rid of the machines. Thereafter if you want to start over you

can. Run vmconfigure-populate afresh and go from there.

Summary: using provided scripts for setting up experiments

Scripts are used. A set of them is provided for each experiment. A summary of the scripts' use and intended

execution order follows.

"vmconfigure-populate" is first, creates machines

"vmconfigure-construct-network" is next, if it exists

"vmconfigure-guestOS-internal-settings" is next, it makes the internal settings after powering the machines on;

 so if this one exists "vmconfigure-poweron" is not needed

"vmconfigure-poweron" is next, if there is no "vmconfigure-guestOS-internal-settings"

Now you can use your VM(s). When you are finished:

"vmconfigure-poweroff"

"vmconfigure-destroy" if you want to delete the machines, but not if you plan to come back to them later

If you do come back to them later,

"vmconfigure-guestOS-internal-settings" should be repeated, if present

"vmconfigure-poweron" if there is not "vmconfigure-guestOS-internal-settings" present

OBTAINING AND INSTALLING THE SCRIPTS

Scripts will be found on Google Drive (as above) in files:

vmconfigure-batch-scripts-windows.zip

vmconfigure-bash-scripts-linux-apple.zip

Download one of these according to your platform. Unzip. There will be a

subdirectory/folder for each exercise you will be assigned, containing the scripts for that

exercise.

SETTING THE PATH VARIABLE

The workhorse of the scripts I may give you is VirtualBox's "vboxmanage" command. It

offers a command line equivalent for accomplishing almost anything that can be done,

alternatively, through the Oracle VM VirtualBox Manager's graphical menus. It's for

scripting. Therefore, when you run my scripts, it is necessary that their calls to

vboxmanage find it. That is, it is necessary that vboxmanage be findable through the

PATH variable. Where is vboxmanage?

Windows: C:\Program Files\Oracle\VirtualBox\VBoxManage.exe

fedora linux: /usr/bin/vboxmanage/vboxmanage

Mac: /Applications/VirtualBox.app/Contents/MacOS/VBoxManage

Put their containing directories into your PATH variable before running scripts, namely:

Windows: C:\Program Files\Oracle\VirtualBox

fedora linux: /usr/bin/vboxmanage

Mac: /Applications/VirtualBox.app/Contents/MacOS

