
1

Interactive bashInteractive bash

David Morgan

broadly follows quigley ch 13 “The Interactive Bash Shell”

The general environmentThe general environment

� source command

� bash startup files (as opposed to system init scripts)

� search path

� command line shortcuts

� arrays

� functions

2

The source commandThe source command

� takes a filename as argument

� operates differently than when called directly

� executes commands in the file, in the current shell
(compare C #include)

� any #! interpreter script first line is a comment

� variables are in common with current shell

� file need not have execute permissions

source demo 1 source demo 1 -- current shellcurrent shell

variable $$ returns PID (ID number) of a process

it's 36630

capture the PID here, within the running script

running on its own, script is executed by a different, second shell

than the calling one

but running "source"d, script is executed by the calling shell

3

source demo 2 source demo 2 -- common variablescommon variables

running in a different shell, script's changes to its variables

do not affect those of the calling shell

running in the calling shell, script's changes to its variables

do affect those of the calling shell

source demo 3 source demo 3 -- execute perm unneededexecute perm unneeded

“file”, called, must be executable

variable holds value assigned by “script”

“file”, sourced, need not be executable (no error)

variable holds value assigned by “file”

“file” is called within “script”

“file” will be sourced

4

Code

.

fork()

.

.

.

environment
(variables)

file descriptors

signal table

arguments

current dir

data

user

Why don't variable changes Why don't variable changes

"work"?"work"?
calling shell

script's shell (unless source'd)

Code

.
fork()

.

.

.

environment
(variables)

file descriptors

signal table

arguments

current dir

data

user
separate processes have

separate sets of variables,
each its own (script's vanish

when script terminates)

bash startup filesbash startup files

� scripts that run when bash starts

� which ones depends on shell type, whether

– login shell or not, and whether

– interactive shell or not

5

Shell typesShell types

interactive non-interactive

login

initial login shells

ssh/telnet shells

n/a

non-login

GUI terminal
windows’ shells

shell scripts’
shells

Startup files per shell typeStartup files per shell type

interactive non-
interactive

login

/etc/profile read & executed by bash

/etc/profile.d/*.sh sourced by /etc/profile

~/.bash_profile

~/.bash_login one, read & executed by bash

~/.profile

~/.bashrc sourced by .bash_profile

/etc/bashrc sourced by .bashrc

n/a

non-login

~/.bashrc called by bash

/etc/bashrc sourced by .bashrc

file named in
BASH_ENV

6

Example /etc/Example /etc/profile.dprofile.d customization scriptcustomization script
((vim.shvim.sh))

student login;

vi alias gets set

root login;

no vi alias set

student vs root distinction

because this script ran

succeeds ($? gets 0) if an alias for vi is in place…
…if so, this doesn’t run, but

if not it does and creates the alias
Customization: typing “vi” invokes vim rather than vi

The search pathThe search path

� “The default path is system-dependent, and is set by
the administrator who installs bash.” –bash man page
(I cannot figure out how from bash’s README/INSTALL.)

� manipulated by some startup files

– /etc/profile

– some /etc/profile.d/ scripts

� krb5-devel.sh, krb5-workstation.sh, ccache.sh, qt.sh

– others may

� customize in ~/.bash_profile

7

Search path, excerpts from /etc/profileSearch path, excerpts from /etc/profile

if “it” isn’t already in PATH

add it to the end or beginning

add these 3 to the beginning

or to the end (added in opposite order, so as to appear in same order)

from a Fedora 10 installation

Search path in ~/.Search path in ~/.bash_profilebash_profile

a customization

8

ImportantlyImportantly……

� startup scripts source one another

– so their PATH alterations, being in a single shell,

accumulate and persist

� export PATH

– so later calls from bash get the changed PATH

Command line shortcutsCommand line shortcuts

� filename completion

� press tab in midstream while typing filename

� scope is fileset in current directory

� command completion

� press tab in midstream while typing command

name

� command history

� latest command recall

� uparrow - recall most recent command, uparrow again command before that,...

� reverse incremental history search

� ctrl-r - then type a substring you remember in a past command you wish to recall

9

ArraysArrays

ways to create arrays

all 4 arrays are sparse

expressing length
of whole array
of individual element

expressing content
of whole array

of individual element

${ } is the general notation for variable expansion

New New (bash 4)(bash 4) associative array typeassociative array type

??

??

declaration not optional for associative arrays

10

FunctionsFunctions

� install runnable code unit in memory

� under a callable name

“A shell function… stores a series of commands for later execution.

When the name of a shell function is used as a simple command name,

the list of commands associated with that function name is executed.

Functions are executed in the context of the current shell; no new process

is created to interpret them (contrast this with the execution of a shell script).

bash man page

FunctionsFunctions

11

Functions Functions –– passing parameterspassing parameters

via positional parameters, like any command

� functions do not return values

� only an exit status, like any command

� exit status explicitly set in a "return" statement, or

� that of the function's final command

� can set a global variable

� better:

Functions Functions –– returning valuesreturning values

