Interactive bash

David Morgan

broadly follows quigley ch 13 “The Interactive Bash Shell”

The general environment

e source command

® bash startup files (as opposed to system init scripts)
e scarch path

e command line shortcuts

® arrays

e functions

The source command

e takes a filename as argument
e operates differently than when called directly

e executes commands in the file, in the current shell

(compare C #include)
e any #! interpreter script first line is a comment
e variables are in common with current shell

e file need not have execute permissions

source demo 1 - current shell

= root@instructor:/home/student

[root@instructor student]# echo "The process ID of this shell 15 < variable $$ returns PID (ID number) of a process
The pr?cess ID of this shell is 36630 < it's 36630

[root@instructor student]#

[root@instructor student]# cat sourcedemol.sh

Here is a script that prints its process ID

MypID=§$ < capture the PID here, within the running script

printf "\nThe process ID of this script is SMYPID \n\n"

ps -ef | head -n 1 # show column headings

ps —ef | grep ——color=auto $MYPID # show parent/child process relationships

printf "\n"

[root@instructor student]# ./sourcedemol.sh running on its own, script is executed by a different, second shell
than the calling one

The process ID of this script is 4

UID PID C STIME TTY TIME CMD
root 43552 36630 © 12:26 pts/0 00:00:00 -bash
root 43555 43552 © 12:26 pts/e 00:00:00 ps -ef

root 43556 43552 @ 12:26 pts/0 00:00:00 grep --color=auto 43552

[root@instructor student]# source ./sourcedemol.sh but running "source"d, script is executed by the calling shell

The process ID of this script is 366

uID PID C STIME TTY TIME CHD

root 36636 36627 @ 11:40 pts/0 00:00:00 -bash
root 43560 36630 © 12:26 pts/0 00:00:00 ps -ef
root 43561 36638 © 12:26 pts/e 00:00:00 grep --color=auto --color=auto 36630

[root@instructor student]# [|

source demo 2 - common variables

root@instructor:/home/student

[root@instructor student]# MYVARIABLE=primary
[root@instructor student]#
[root@instructor student]# printf "\nthe shell thinks the value of MYVARIABLE is \"$MYVARTABLE\"\n\n"

the shell thinks the value of MYVARIABLE is "primary"

[rooteinstructor student]# cat sourcedemo2.sh

¢ Here is a program that assigns then displays (the? a?) variable named MYVARIABLE
MYVARIABLE=secondary

printf "\nThe script thinks the value of MYVARIABLE is \"$MYVARIABLE\"\n\n"

[root@instructor student]# ./sourcedemo2.sh running in a different shell, script's changes to its variables

do not affect those of the calling shell

The script thinks the value of MYVARIABLE s "secondary
[root@instructor student]# printf "\nthe shell thinl the value of MYVARIABLE is \"$MYVARIABLE\"\n\n"

the shell thinks the value of MVYVARIABLE is "primary"

[rootginstructor student]# source ./sourcedemo2.sh running in the calling shell, script's changes to its variables
do affect those of the calling shell

The script thinks the value of MYVARIABLE is "secondary"
[root@instructor student]# printf "\nthe shell thinks ti value of MYVARIABLE is \"$MYVARIABLE\"\n\n"

the shell thinks the value of MYVARIABLE is "secondary"

[root@instructor student]#

source demo 3 - execute perm unneeded

[root@fedora test]# 1s -1 %

-rw-r--r--. 1 root root 18 Jan 16 00:04 file
-rwxr-xr-x. 1 root reot 96 Jan 16 00:07
[root@fedora test]# cat file
SALUTATION=hello

[root@fedora test]# cat script
echo "Let's get started”

SALUTATION=grestings <«—— “file” is called within “script”

echo "OK now we're done"

[reot@fedora test]# ./script

Let's get started e s

./script: 1ine 3: ./file: Permission denied <€—— “file”, called, must be executable
greetings

OK now we're done

[root@fedora test]# chmod +x file

[rocgt@fedora test]# ./script

;ﬁ;e‘ts:"i g;g started <€—— variable holds value assigned by “script”

OK now we're done

[root@fedora test]# sed -1 's/\.\/file/source \.\/file/' script €—— “file” will be sourced
Eroot@;egora tes‘t%# c?mod -x file
root@fedora test]# ./script WEra o . suts

Let's get started) <«—— “file”, sf)urced, nee"d not be executable (no error)
hello <€—— variable holds value assigned by “file”

0K now we're done

[root@fedora test]#

Why don't variable changes
"work"?

calling shell

current dir script's shell (unless source'd)
arguments current dir

) 5 arguments
environment

(variables)

environment

(variables)
data
signal table
file descriptors

user file descriptors|

separate processes have

separate sets of variables,
each its own (script's vanish

when script terminates)

bash startup files

e scripts that run when bash starts
e which ones depends on shell type, whether
— login shell or not, and whether

— interactive shell or not

Shell types

interactive non-interactive

initial login shells
login
ssh/telnet shells

GUI terminal shell scripts’
non-login windows’ shells shells

Startup files per shell type

interactive non-
Interactive

/etc/profile read & executed by bash
/etc/profile.d/*.sh sourced by /etc/profile
~/.bash_profile
~/.bash_login } one, read & executed by bash
~/.profile
~/.bashrc sourced by .bash_profile
/etc/bashrc sourced by .bashrc

~/.bashrc called by bash file named in

. /etc/bashrc sourced by .bashrc BASH_ENV
non-login

Example /etc/profile.d customization script

(vim.sh)

File Edit View Search Terminal Help

[student@instructor ~1% .
[student@instructor ~]$ ssh student@instructor D St_Ud_cm login;
student@instructor's password: vi alias gets set
Last login: Wed Jul 26 13:45:40 2017
[student@instructo, . s echo $7
alias vi='vim'
¢}
[student@instructor ~1$ exit
logout
Connection to instructor closed.
[student@inst ructor ~]1$ ¢ sl
[student@instructor ~1$ ssh root@instructor rootﬁlogzm,
root@instructor's password: no vi alias set
Last login: Wed Jul 26 13:44:30 2017 from 1 -
[root@instructor ~]1# alias vi; e ?
-bash: alias: vi: not found i i
i — because this script ran
[root@instructor ~]# cat fetc/profile.d/vim.sh
if [-n "$BASH_VERSION" -o -n "$KSH_VERSION" -o -n "$ZSH_VERSION" 1; then
[-x fusr/bin/id] || return
ID="/usr/bin/id -u” <€——— student vs root distinction
[-n "$ID" -a "$ID" -le 200] && return
for bash and zsh, only if no alias is already set
alias vi =/dev/null 2=&1 || alias vi=vim
fi
[root@instructor

succeeds ($? gets 0) if an alias for vi is in place...
...if so, this doesn’t run, but

Customization: typing “vi” invokes vim rather than vi if not it does and creates the alias

The search path

e “The default path is system-dependent, and is set by

the administrator who installs bash.” —bash man page
(I cannot figure out how from bash’s README/INSTALL.)

e manipulated by some startup files
— Jetc/profile
— some /etc/profile.d/ scripts
e krb5-devel.sh, krb5-workstation.sh, ccache.sh, gt.sh
— others may
e customize in ~/.bash_profile

Search path, excerpts from /etc/profile

£ root®frausto:~ g!

[root@frausto ~]# grep -A9 -Bl "munge ()" /etc/profile; grep -Al0 -B1l "manip'" /etc/profile

pathmunge () {
if ! echo $PATH | /bin/egrep -q "(A]|:)31($]:)" 4 then
i "$2" = "after" ; then

if ["$2" =] h (L.-_‘___~‘ o .
PATH=$PATH:$1 if “it” isn’t already in PATH

else

& PATH=$1:3PATH €——— add it to the end or beginning
5
fi

}

Path manipulation
if ["$EuiD” = "0" 1; then
pathmunge /sbhin <€——— add these 3 to the beginning
pathmunge /usr/sbin
athmunge /usr/local/sbin
else
pathmunge /usr/local/sbin after €——— or to the end (added in opposite order, so as to appear in same order)
pathmunge /fusr/sbin after
fpathmunge /sbin after
5

[root@frausto ~]#

from a Fedora 10 installation

Search path in ~/.bash_profile

& root@frausto: -

[root@frausto ~]# cat ~/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
£ ~f .bashrc

i

User specific environment and startup programs

PATH=3$PATH : <€—— a customization

export PATH
unset USERNAME
[root@frausto ~]#

Importantly...

e startup scripts source one another

— so their PATH alterations, being in a single shell,
accumulate and persist

e cxport PATH
— so later calls from bash get the changed PATH

Command line shortcuts

e filename completion
@ press tab in midstream while typing filename
® scope is fileset in current directory

e command completion

® press tab in midstream while typing command
name

e command history

e latest command recall

® UPAIrOW - recall most recent command, uparrow again command before that,...

e reverse incremental history search

[] Ctrl-r = then type a substring you remember in a past command you wish to recall

[root@frausto ~]# cat arrays
declare -a LAKES

LakES[1]=superior
LakES[2]=michigan
LAKES[3]=huran
LakES[4]=erie
Lakes[5]=ontario

STOOGES [1]=moe
sTooGES[3]=Tarry
STOOGES[5]=curley

DIRECTIONS=(north south east west)

${ } is the general notation for variable expansion

ways to create arrays

" root@frausto: -
[rootefrausto ~1+ . /arrays

There are 5 '\akes
(Tent

0. h o)
ELEMENTS=(earth [3]=air fire water) 1. superior (length &)
2. michigan C'Iength 8)
echo; echo "There are ${FLAKES[*]} lakes: ${LAKES[*]}" 3. huron Clength 53
for i in {0..5}; do echo —e "§i. ${Lakes[$1]} “u(length ${#Laxes[$i]11)"; done 4. erie ¢length 4)
5. ontario ¢length 73
lecho; echo "There are H#STOOGES[1} stooges: ${STOOGES[%]}"
[for i in {0..5}; do $1. §{sTo0GES[$1]} “t(length ${#sTooGES[§1]1P)"; done IThere are_3 stﬁug§s: moe larry curley
0. ength 0
echo; echo “There are [§{#DIRECTIONS[*]} directions: ${DIRECTI 1. moe o (length 3}
[for i in {0..5}; do echo=e ¢ —$i{pTRECTIONS[$1]} \t('length {#DIRE(TIONS[$1‘]}“; done 2. (length 0)
3. larry Clength 5)
echo; echo "There are S{#ELEMENTS[" I elements: §{ELEMENTS[*]} 4. (length 0)
[for i in {0..5}; do e "$1. [fiELEmENTS[$iTF NTCTengrh ${#ELE S[$1110"; done 5. curley ¢length &)
[root@frausto ~]#
There are 4 directions: north south east west
0. north (length 5)
X . south (length 53
expressing length 2. east Clength 43
¢ — 3. west Clength 43
of whole array i Clengeh 5
of individual element 5 Clength 02

There are 4 elements:
0. earth o

[rootGfrausto ~]4

superior michigan huron erie ontario

earth air fire water

Clength 5)
: ¢length 0)
2. Clength o)
. air (length 3)
1. Fire (length 43
5. water Clength 53

all 4 arrays are sparse

New (bash 4) associative array type

root@unexgate
root@unexgate

|# declare

A _capitals

cap1ta1s[ca11forn1a] sacramento

ERTP

root@unexgate

#
#
I + 5
#
root@unexgate #

5

Apdeal
14 1

PECERTST]
L S

echo ${#capitals[*]1}

[root@unexgate

~]# echo ${capitals[*]}

springfield sacramento

rootdunexgate ~

declaration not optional for associative arrays

#*
root@unexgate ~]#
root@unexgate ~]# foods[Japan]|=sushi

fro'o't@unexgate
urry

[root exgate
urry?#?

declare:

roﬁ@uﬁ&m&};\:# foods[1ndia]= =curry
rg)g)t@unexga echo ${#foods[*]}

~]# echo §
~1# ec oods [japanl}

~]# declare -A foods . T
foods: cannot convert indexed to associative array

[Foot@Onexgate
[root@unexgate
[root@unexgate
[root@unexgate
[root@unexgate
[root@unexgate
[root@unexgate
[root@unexgate

~]%¥ URsSet roods

~]# declare -A foods
~]#
~]#
~]#
~]#
~1#
~]#

foods[japan]=sushi
foods[india]=curry
foods[italy]=pasta

echo ${foods[*1}

curry sushi pasta
[root@unexgate ~1#
sushi

[root@unexgate ~]#

echo ${foods[Jjapanl}

Functions

e install runnable code unit in memory
e under a callable name

“A shell function... stores a series of commands for later execution.

When the name of a shell function is used as a simple command name,

the list of commands associated with that function name is executed.

Functions are executed in the context of the current shell; no new process

is created to interpret them (contrast this with the execution of a shell script).
bash man page

Functions

& davidefrausto:~
[david@frausto
[david@frausto
[david@frausto
hello david
[david@frausto
[david@frausto
reet (O

echo hello $LOGNAME
[david@frausto ~]%

Functions — passing parameters

via positional parameters, like any command

" root@unexgate: -

[rooct@unexgate ~]# cat function-parameters
#! /bin/bash

function testfunction

echo -e "\ntestfunction's positional parameters (\$*) are: $*"

echo -e "\nScript's positional parameters (\$*) are: $*"
testfunction ONE TWO THREE

echo -e "\nFunction has its own, separate from those of_the program that cont
ains function's code. Use this mechanism for passing values to functions.\n"

[root@unexgate ~]# i
[root@unexgate ~]# ./function-parameters FRONT BACK LEFT RIGHT UP DOWN

Script's positional parameters ($*) are: FRONT BACK LEFT RIGHT UP DOWN
testfunction's positional parameters ($*) are: ONE TwWO THREE

Function has its own, separate from those of the program that contains functi
on's code. Use this mechanism for passing values to functions.

[root@unexgate ~]#

Functions — returning values

e functions do not return values

e only an exit status, like any command
e exit status explicitly set in a "return" statement, or

e that of the function's final command

® can set a global variable

[root@instructor ~]# cat funcdemo.sh

function myfunc

{

local myresult="some value'

echo "$myresult" # output (print) the desired result
}

result=$(myfunc) # produces the function's output, stores it
echo $result

[root@instructor ~]# ./funcdemo.sh
some value
[root@instructor ~]# I

