
1

Shell Script ProgrammingShell Script Programming

David Morgan

Shell scriptsShell scripts

� files

� containing sequences (any!) of command-
line commands

� executed collectively in sequence by
giving the filename to the shell instead of
the individual commands

2

Connecting script to a shellConnecting script to a shell

� give script file’s name on comand line

$ myscript

� give an executable shell on command line
with script file’s name as argument to it

$ sh myscript

$ ksh myscript

$ csh myscript

$ bash myscript

ExecutabilityExecutability

� script file’s name on comand line

– current shell causes execution of the file

– file must therefore be executable (use chmod)

� executable shell on command line with script
file’s name as parameter

– called shell causes execution of the file

– file need not be executable (just readable)

3

Executing in the current shellExecuting in the current shell
using the using the ““sourcesource”” builtinbuiltin

� “.”or “source” on command line followed by script’s
name

– current shell executes the file (not a child shell)

� commands are executed in current shell

– e.g., variables created in current shell’s space (so, persist)

– e.g., exit collapses current shell (instead of returning to it from

another one-- there is no other one)

Getting a script to runGetting a script to run

file lacks execute permission

file specification is ambiguous, and current directory not in PATH's list of directories

runs, in a different shell

runs, in the same shell

why does this give the PID of the shell process and not of that of echo?

4

Getting another shell to run your scriptGetting another shell to run your script

file lacks execute permission, won't run

prints out variable BASH

file lacks execute permission, bash runs it anyway

ksh runs it anyway

csh runs it anyway

bash maintains a variable BASH containing "/bin/bash"

ksh maintains no variable BASH

don't know about "BASH"

but csh looks for $BASH literally

and dollar sign in its name is illegal

ParametersParameters

� variables (named parameters)

� positional parameters

– $1, $2, etc – command line arguments

� special parameters

– $0 - command line script name

– $# - number of positional parameters

– $* - positional parameters collectively

– $$ - process ID (PID) of the shell (from which executed)

– $? – exit status of most recent command

5

VariablesVariables

� create: DAY=Monday

– undeclared

– untyped (all variables are string type)

� destroy: unset DAY, or terminate script

� list: set

Getting user inputGetting user input

� read command

� followed by optional name list

� creates variables by those names, assigns
input to each word-by-word

� final name in list gets all remaining words

6

How read distributes words to namesHow read distributes words to names

5 words, 3 names to receive them

7 words, 3 names to receive them

2 words, 3 names to receive them

4 words, 3 names to receive them

Conditions: Conditions: what are they syntactically?what are they syntactically?

� conditions are lists

� a list - one or more pipelines

pipeline1; pipeline2; pipeline3

� a pipeline - one or more commands

command1 | command 2 | command3

Observations:

a pipeline can be a single command

a list can be a single pipeline

a list can therefore also be a single command, and a single command is a list

technique: use semi-colons to string multiple commands on a single line

7

Conditions: Conditions: what are they physically?what are they physically?

� values of an in-kernel storage word

� available values 0-255

Conditions: Conditions: what uses/reads them?what uses/reads them?

� some commands that branch

– if

� some commands that loop

– while

– until

� you, with $? special parameter

general: less general:

if list1 if command

then then

list2 commands

fi fi

while list1 while command

do do

list2 commands

done done

8

Conditions: Conditions: what sets/writes them?what sets/writes them?

� the exit() system function

� used by

– every command

– the shell "exit" builtin (which in turn calls the system function)

exit status: exit status: what is its value range?what is its value range?

how did this program end?

exit-argument-MOD-256

what is the role of parentheses?

(hint: what is role of exit other than

setting status?)

9

What do exit status values signify?What do exit status values signify?

man grep:

man ls:

Exit status Exit status vsvs command outputcommand output

� exit status what gets writ to exit status word

� output what gets printed to stdout

� sometimes you want one without the other

for its exit status

for its output

10

if if –– conditional executionconditional execution

if condition *

then

commands

fi

man bash:

if W
H

A
T

?
?the exit status is the condition

the conditions of if's are commands' exit statuses

*remember, conditions are lists and lists are made of commands

if if –– conditional executionconditional execution

condition (= grep's exit status)

commands

user supplied argument

man grep:

11

if if –– conditional executionconditional execution

� what if user supplies no argument?

� protect with another, initial if

– count the arguments

– if none, exit

– desired condition: the relational "count exceeds zero"

� conditions are exit statuses

� relationals are not exit statuses

� how to turn a relational

into an exit status in order

to use it as a condition?

condition

commands

user supplied argument

"test" command "test" command –– converts converts relationalsrelationals to to

exit statusesexit statuses

relational expressions and

corresponding exit statuses

usage check:

upper if construct
protects lower one from

this particular error

12

expressions for "test " commandexpressions for "test " command

–– arithmetic comparisonarithmetic comparison

� exp1 –eq exp2 expressions equal

� exp1 –ne exp2 expressions not equal

� exp1 –gt exp2 exp1 greater than exp2

� exp1 –lt exp2 exp1 less than exp2

� ! expression expression is false

True if:

note unusual operators

� string string is not an empty string

� -z string string is an empty string

� string1 = string2 strings are same

� string1 != string2 strings are not same

expressions for "test " commandexpressions for "test " command

–– string comparisonstring comparison

True if:

13

� -e file file exists

� -d file file is a directory

� -f file file is a regular file

� -r file file is a readable

� -w file file is a writeable

� -x file file is a executable

expressions for "test " commandexpressions for "test " command

–– file testsfile tests

True if:

[] is a synonym for test[] is a synonym for test

EQUIVALENT

[] is not a syntax demarcator

it is a command

14

DonDon’’t get syntaxes confusedt get syntaxes confused
if vs. testif vs. test

if [-f fred.c]

then

do something

fi

if [-f fred.c]

then

do something

fi

Misconception Reality

Wrong: [] belong to “if” syntax Right: [] belong to (are implicit

form of) “test” syntax

[] is not a syntax demarcator

it is a command

Common errorCommon error
if vs. testif vs. test

if grep -q david /etc/passwd

then

echo “Found him”

fi

Wrong Right

if [grep -q david /etc/passwd]

then

echo “Found him”

fi

But this is OK

if (grep -q david /etc/passwd)

then

echo “Found him”

fi

(for entirely unrelated reasons:

parentheses are not brackets)

15

[[]] logical evaluation[[]] logical evaluation

� cf. [] test command

� [[]] "extended test command"

� for its exit status

� different (generally more familiar)
syntax than test's (e.g., > instead of -gt)

(()) arithmetic evaluation(()) arithmetic evaluation

� cf. $(()) arithmetic expansion

– arithmetic evaluation is for its exit status

– arithmetic expansion is for its output

16

Different forms of evaluationDifferent forms of evaluation

test

[(test eqivalemt)

arithmetic evaluation

logical evaluation

These differ in:

- syntax

- whitespace requrements

- operators

interpreter scripts interpreter scripts -- shebang #!shebang #!

error messages all over the place

Wrong language!! that's not bash language!

(It's bc)

insert this line, identify the interpreter to apply to remaining lines

invokes bc

now it runs fine

17

interpreter scripts interpreter scripts -- #!/bin/bash#!/bin/bash

runs OK

it's bash language, bash was invoked to run it by default

insert this line, identify the interpreter to apply to remaining lines

still runs OK, I guess we didn't need the shebang line here

(what about elsewhere? executed from a different shell?)

could run bash by declaration, or by default IF THAT'S THE DEFAULT

portability issue: start scripts with #!/bin/bash on the first line

by default = by accident shebang = unambiguous

Arithmetic evaluation by bashArithmetic evaluation by bash

-- computationally expensive, inefficientcomputationally expensive, inefficient

$((22+33)

00110010 00110010 00101011 00110011 00110011

00010110

00100001

00110111

00110101 00110101

2 33+2

5 5

+

expensive!

sheesh!

18

looping looping –– conditional repetitionconditional repetition

whilewhile

while condition do

commands

done

whilewhile

read trythis

while [“$trythis” != “secret”]

do

echo “Sorry, try again“

read trythis

done

19

until condition

do

commands

done

looping looping –– conditional repetitionconditional repetition

untiluntil

untiluntil

until who | grep "$1" > /dev/null

do

sleep 5

done

echo "*** $1 has just logged in ***"

20

for variable in values

do

commands

done

looping looping –– nonnon-- conditional repetitionconditional repetition

forfor

for loop with fixed stringsfor loop with fixed strings

for foo in bar fud 43

do

echo $foo

done

21

Manufacture step values withManufacture step values with

{{x..yx..y}} oror seqseq x yx y

looping thru a filelooping thru a file

while read LINE

do

echo $LINE

done < /home/joe/myfile

22

looping thru command outputlooping thru command output

who |

while read LINE

do

echo $LINE

done

here documentshere documents

Call as “birthday Lincoln" to print

the Lincoln record

grep -i "$1" <<+

Washington Feb 22

Lincoln Feb 12

King Jan 17

+

here document

an embedded “pseudo-file”

because script takes input

from within the script file

itself instead of resorting

to a real, external file

