Shell Script Programming

David Morgan

Shell scripts

e files

e containing sequences (any!) of command-
line commands

e cxecuted collectively in sequence by
giving the filename to the shell instead of
the individual commands

Connecting script to a shell

e give script file’s name on comand line
$ myscript
e give an executable shell on command line
with script file’s name as argument to it
$ sh myscript
$ ksh myscript
$ csh myscript
$ bash myscript

Executability

e script file’s name on comand line
— current shell causes execution of the file
— file must therefore be executable (use chmod)

e executable shell on command line with script
file’s name as parameter

— called shell causes execution of the file
— file need not be executable (just readable)

Executing in the current shell
using the “source” builtin

€6 9

® “”or “source” on command line followed by script’s
name

— current shell executes the file (not a child shell)
e commands are executed in current shell
— e.g., variables created in current shell’s space (so, persist)

—c.2., exit collapses current shell (instead of returning to it from
another one-- there is no other one)

Getting a script to run

[root@instructor ~]#
[root@instructor ~]# echo "This shell's process ID is $3" <—— why does this give the PID of the shell process and not of that of echo?
This shell's process ID ‘\s

[root@instructor ~]# 1s -1 myscript.sh

-rw-r--r-- 1 root root 217 Jul 16 14:33 myscript.sh
[root@instructor ~]# cat myscript.sh

echo

echo "\58 is 50 (command name as typed)"

echo "\$1 is $1 (command's first argument)"

echo "\$2 is 52 (command's second argument)"

echo "\S# is $# (command's arguments)"

echo "\$5 is §% (shell's process ID)"

echo

[root@instructor ~]# myscript.sh

bash: myscript.sh: command not found... <—— file specification is ambiguous, and current directory not in PATH's list of directories
[reoot@instructor ~]# ./myscript.sh

bash: ./myscript.sh: Permission denied <—— file lacks execute permission

[root@instructor ~]# chmod +x myscript.sh
[root@instructor ~]# ./myscript.sh

s0 is ./myscript.sh (command name as typed)
$1 is (command's first argument)

$2 is (command's second argument)

$# is @ (command's arguments)

$$ is 26587 (shell's process ID)
runs, in a different shell
.sh

[root@instructor ~]# source ./myscript

S0 is bash (command name as typed)
$1 is (command's first argument)
$2 is (command's second argument)
$# is @ (command's arguments)

$$ is 24728 (shell's process ID)

[root@instructor ~]# runs, in the same shell

Getting another shell to run your script

[root@instructor ~]#
[root@instructor ~]# echo "This shell's process ID is $§"

This shell's process ID 'is

[root@instructor ~]#

[root@instructor ~]# 1s -1 myscript.sh

~rw-r--r-- 1 root root 94 Jul 16 14:55 myscript.sh

[root@instructor ~]# cat myscript.sh

echo

echo "\§$ is $$ (shell's process ID)"

echo "variable BASH (if any) contains: $BASH" < printsoutvariable BASH
echo

[root@instructor ~]# ./myscript.sh — file lacks execute permission, won't run
bash: ./myscript.sh: Permission denied
[root@instructor ~]# bash myscript.sh

\ file lacks execute permission, bash runs it anyway

5% is 28723 (shell's process ID) ksh runs it anyway
variable BASH (if any) contains: /bin/bash o cshrunsitanyway
[root@instructor ~]# ksh myscript.sh \

bash maintains a variable BASH containing "/bin/bash"

$¢ 1s 28727 (shell's process ID) ksh maintains no variable BASH
variable BASH (if any) contains: é///

don't know about "BASH"
[root@instructor ~]# csh myscript.sh / but csh looks for $BASH literally

and dollar sign in its name is illegal
Variable name must contain alphanumeric characters.
[root@instructor ~]#

Parameters

e variables (named parameters)
® positional parameters
— $1, $2, etc — command line arguments
® special parameters
$0 - command line script name

$# - number of positional parameters

$* - positional parameters collectively
$$ - process 1D (P ID) of the shell (from which executed)
$? — exit status of most recent command

Variables
e create: DAY=Monday

— undeclared

— untyped (all variables are string type)
e destroy: unset DAY, or terminate script
e list: set

Getting user input

e read command
e followed by optional name list

e creates variables by those names, assigns
input to each word-by-word

e final name in list gets all remaining words

How read distributes words to names

[root@instructor ~]#
[root@instructor ~]# read varl var2 var3

washington oregon california bajanorte bajasur <—— 5 words, 3 names to receive them
[root@instructor ~]#

[root@instructor ~]# echo $varl; echo $var2; echo $var3

lwashington

oregon

california bajanorte bajasur

[root@instructor ~J]#

[root@instructor ~]# read varl var2 var3

washington oregon california baja norte baja sur <—— 7 words, 3 names to receive them
[root@instructor ~1# echo $varl; echo $var2; echo $var3

lwashington

oregon

california baja norte baja sur

[root@instructor ~]#

[root@instructor ~]# read varl var2 var3

bajanorte bajasur <—— 2 words, 3 names to receive them
[root@instructor ~]# echo $varl; echo $var2; echo $var3

[root@instructor ~]# read varl var2 var3
baja norte baja sur <—— 4 words, 3 names to receive them
[root@instructor ~]# echo $varl; echo $var2; echo $var3

baja sur
[root@instructor ~]#

Conditions: what are they syntactically?

e conditions are lists

® a list - one or more pipelines
pipelinel; pipeline2; pipeline3

® a pipeline - one or more commands
commandl | command 2 | command3

Observations

a pipeline can be a single command

a list can be a single pipeline

a list can therefore also be a single command, and a single command is a list
technique: use semi-colons to string multiple commands on a single line

Conditions: what are they physically?

e values of an in-kernel storage word
e available values 0-255

exit status

Conditions: what uses/reads them?

e some commands that branch

1 if command
1 f then
commands

e some commands that loop i i

less general:

— While while list1 while command

do do
list2 commands

- llntll done done

e you, with $? special parameter

Conditions: what sets/writes t

e the exit() system function
e used by

— every command

— the shell "exit" builtin (which in turn calls the system function)

exit status: what is its value range?

HELLO

-ne 'The
-ne 'The
-ne 'The
-ne 'The
-ne 'The
-ne 'The
-ne 'The
GOOD-BYE

exit
exit
exit
exit
exit
exit
exit

status of
status of
status of
status of
status of
status of
status of

status
status
status
status
status
status
status

"(exit
"(exit
"(exit
"(exit
"(exit
"(exit

of "(exit

[root@instructor ~J]# cat exitstatus-byte.sh

of "(exit 2)" is 5 (exit 2) echo
of "(exit 254)" is ' ; (exit 254) echo
of "(exit 255)" is ' ; (exit 255) echo
of "(exit 256)" is ' ; (exit 256) echo
of "(exit 257)" is ' ; (exit 257) echo

1030)" 1ds '; (exit 1030) ; echo
of "exit 1030" is ' ; exit 1030 echo

<— how did this program end?

[root@instructor ~]# ./exitstatus-byte.sh

2)" s 2
254)" s 254
255)" is 255
256)" s 0
257)" s 1
1030)" is 6

/

"exit 1030" s [r?ot@instructor ~]4# I

exit-argument-MOD-256

$?
$?

?
$?
$?

$?

what is the role of parentheses?
(hint: what is role of exit other than
setting status?)

What do exit status values signify?

[root@instructor ~]# ./exitstatus.sh
./exitstatus.sh

[COMMAND -->

for subtext "four five six" that is in target text
five six

for subtext "seven" that isn't in target text

[coMMAND —->
ACTION --> for subtext "seven" in non-text (/bin/)
OUTPUT —-> : /bin/: Is a directory

EXIT STATUS

1s
1s for a file "/etc/passwd" that exists
Jetc/passwd
]
[commaND --> 1s
ACTTON --> 1s for a file "/etc/password" that does not exist
ouTPUT --> 1s: cannot access '/etc/password': No such file or directory
EXIT STATUS --> 2
What does an exit status "2" mean? <——

[root@instructor ~]# |

Exit status:
o if oK,

if minor problems (e.g., cannot access subdirectory),

if serious trouble (e.g., cannot access command-line argument).

Exit status vs command output

® cxit status what gets writ to exit status word
e output what gets printed to stdout
e sometimes you want one without the other

[root@instructor ~]#
[root@instructor ~]# cat exitstatus-vs-output.sh for its exit status

for its output
david's record in the /etc/passwd user rost ile looks like this:

david:x:1086:1090:: /home vid:/bin/bash

#
#
#
#
#

if grep david /etc/passwd > /dev/null
echo '"david's UID is $(grep david /etc/passwd | cut -d : -f 3) "
echo '"no such user™

[root@instructor ~]# ./exitstatus-vs-output.sh

david's UID is 1086
[root@instructor ~]# I

If — conditional execution

if condition

then
commands
f

* L. . . .
remember, conditions are lists and lists are made of commands

if 1ist; then 1ist; [elif Tist; then Tist;] ... [else Tist;] fi X X
he ist is executed. If its exit status is zero, the then Tist is exe-
cuted. Otherwise, ...

the exit status is the condition
the conditions of if's are commands' exit statuses

If — conditional execution

[root@instructor shellprogrammingl# cat if3.sh
user supplied argument
" $1 s " N
l grep $1 states.csv S /dev/null] condition (= grep’s exit status)

[echo "+xPRESENT =" |

commands

[echo "+xABSENT*x" |

[root@instructor shellprogrammingl# . . Montana
Montana is **PRESENTx*

[root@instructor shellprogrammingl# . . Manitoba
Manitoba is **ABSENTxx

[root@instructor shellprogramming]#

[root@instructor shellprogrammingl# . . Texas
Texas s **PRESENT#*x*

[root@instructor shellprogrammingl# . . Tamauluipas
Tamauluipas is **ABSENTxx

[root@instructor shellprogrammingl#

[root@instructor shellprogrammingl# I

Normally the exit status is © if a line is selected, 1 if no lines were selected, and 2 if an error occurred.

10

if — conditional execution

e what if user supplies no argument?
e protect with another, initial if
— count the arguments

— if none, exit

— desired condition: the relational "count exceeds zero"

e conditions are exit statuses
o . « 51 % user supplied argumen
e relationals are not exit statuses [l E——

e how to turn a relational

[root@instructor shellprogramming]# cat 1f3.sh

commands

[root@instructor shellprogramming]¥ ./1f3.sh Montana
ana s +PRESENT»

shellprogrammingl® ./if3.sh Manitoba

into an exit status in order e

shellprogramminglé sh Texas

to use it as a condition? e .

[rootainstructor shellprogramningli [

"test" command — converts relationals to
[root@instructor shellprogrammingl# man test | "Ei:[&,;ﬁand; eXit Statu Ses

TEST (1)

namE

test - check file types and compare values

svNoPSTS

test EXPRESSION

est
[EXPRESSION]

[
[opTION

DESCRIPTION
Exit with

relational expressions and
corresponding exit statuses

the status determined by EXPRESSION.

[rootainstructor
[rootainstructor
o
[rootainstructor
[rootainstructor
1
[root@instructor
Lootainstructor

Troot@instructor
oot@instructor

Troot@instructor

shellprogramming]# grep Montana states/fsv > /dev/null

shellprogramming]# echo $?

shellprogramming)# grep Manitoba es.csv > /dev/null

shellprogramming]# echo $?

shellprogramming)# test O ceq 0

shellprogrammingl# echo $?

shellprogramming]# test 1 zeq @

shellprogramming]# echo $2

shellprogrammingl# |

[root@instructor shellprogramming]# cat if3b.sh

if test $%# —eq @ # $# s number of command line arguments
then
echo "You must supply an argument”
exit 9 # programmer could define 9 to mean "no argument"
i !
upper if construct
echo -n " $1 is " protects lower one from
grep $1 states.csv > /dev/null this particular error

echo "xxPRESENT*x"

echo "**xABSENT**"

[rooteinstructor shellprogramming]# ./if3b.sh

You must supply an argument

[root@instructor shellprogramming]# ./if3b.sh Michoacan
Michoacan is x*ABSENT*x

[root@instructor shellprogramming]#

11

expressions for "test " command
— arithmetic comparison

e cxpl —eq exp2
® expl —ne exp2
® expl —gt exp2
e expl -t exp2
e | expression

note unusual operators

True if:

expressions equal
expressions not equal
expl greater than exp2
expl less than exp2
expression is false

expressions for "test " command
— string comparison

® string

® -7 string

® stringl = string?
e string]l != string2

True if:

string is not an empty string
string 1s an empty string
strings are same

strings are not same

12

expressions for "test " command

— file tests

True if:

file exists

file 1s a directory
file 1s a regular file
file 1s a readable
file 1s a writeable
file 1s a executable

IS a synonym for test

[root@instructor ~]#
[root@instructor ~]# cat triall

age=16
1f[test "Sage" -ge "21"

echo "old enough to dr

echo "sorry sonny"
[root@instructor ~]# ./triall EQUIVALENT
sorry sonny
[root@instructor ~]# cat trial2

age=16
T ——

echo "old enough to drink"

echo "sorry sonny"

[root@instructor ~]# ./trial2
sorry sonny
[root@instructor ~]# I

13

Don’t get syntaxes confused
if vs. test

Misconception Reality

-f fred.c [-f fred.c]

Wrong: [] belong to “if” syntax Right: [] belong to (are implicit
form of) “test” syntax

[1 is not a syntax demarcator

it is a command

Common error
if vs. test

Right

But this is OK

(for entirely unrelated reasons:
parentheses are not brackets)

14

[[]] logical evaluation

ecf. [] testcommand
e [[]] "extended test command"
e for its exit status

e different (generally more familiar)
syntax than test's (e.g., > instead of -gt)

(()) arithmetic evaluation

o cf. $(()) arithmetic expansion
— arithmetic evaluation is for its exit status

— arithmetic expansion is for its output

15

Different forms of evaluation

[root@instructor ~]# cat evaluations.sh

AGE=$1

if test "$AGE" -gt "20" ; then test
echo "old enough to drink"
else

echo "too young to drink"

[root@instructor ~]#
[root@instructor ~]#
too young to drink
if ["$AGE" -gt "20"] ; then [(test eqivalemt) too young to drink
echo "old enough to drink" drink
else drink
echo "too young to drink"

fi

./evaluations.sh 11

[root@instructor ~1#
old enough to drink
old enough to drink
old enough to drink
old enough to drink
[root@instructor ~1#
. [root@instructor ~1# ./evaluations.sh 31
fi old enough to drink

fi ./evaluations.sh 21

if ((_AGE > 20)) ; then arithmetic evaluation
echo "old enough to drink"

else

echo "too young to drink"

if [[$AGE > 20 1] ; then logical evaluation
&chic "GTd enough to drink”

[root@instructor ~]#
[rooteinstructor ~]# ||

else
echo "too young to drink" These differ in:

fi - syntax
- whitespace requrements
- operators

[root@instructor ~1# ||

interpreter scripts - shebang #!

[root@instructor ~1#

[root@instructor ~]# ./myscript

./myscript: line 2: print: command not found
./myscript: line 3: print: command not found
./myscript: line 4: quit: command not found
[root@instructor ~]#

[root@instructor ~]# cat myscript

<—— error messages all over the place

<—— Wrong language!! that's not bash language!
print "\n"

quit (It's be)

[root@instructor ~]# sed -1 1'i#!/usr/bin/bc' myscript
[root@instructor ~]# cat myscript
€—— insert this line, identify the interpreter to apply to remaining lines

print "\n"
quit

invokes bc
[root@instructor ~J¢ ./myseript / now it runs fine
bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty'.
4.8823529411
[root@instructor ~]# I

16

interpreter scripts - #!/bin/bash

[root@instructor ~]#

[root@instructor ~J# ./two-plus-two.sh

Two plus two is 4. <— runs OK

[root@instructor ~]#

[root@instructor ~]# cat two-plus-two.sh

echo "Two plus two is §((2+2))." <—— it's bash language, bash was invoked to run it by default
[root@instructor ~]#

[root@instructor ~]# sed -i 1'i#!/bin/bash' two-plus-two.sh

[root@instructor ~]#

[root@instructor ~]# cat two-plus-two.sh

#1/bin/bash €———— insert this line, identify the interpreter to apply to remaining lines
echo "Two plus two is $((2+2))."

[root@instructor ~]#

[root@instructor ~J# ./two-plus-two.sh

Two plus two is 4. <— still runs OK, I guess we didn't need the shebang line here
[root@instructor ~7# (what about elsewhere? executed from a different shell?)

i ~74
[rooteinstructor ~1# [could run bash by declaration, or by default IF THAT'S THE DEFAULT

portab ;" start scripts with #!/bin/bash on the first line
by defa y accident shebang = unambiguous

Arithmetic evaluation by bash
- computationally expensive, inefficient

$((22433)

2 2 + 3 3
—~~~—
00110010 00110010 00101011 00110011 00110011

00010110
+ 00100001
00110111

00110101 00110101

looping — conditional repetition

while

while condition do
commands
done

while

read trythis
while [“S$Strythis” != “secret”]
do

echo “Sorry, try again”

read trythis

18

looping — conditional repetition

until

until condition

do
commands
done

until

until who | grep "$1" > /dev/null
do

sleep 5
done

echo "*** S1 has just logged in ***"

19

looping — non- conditional repetition

for

for variable in values
do

commands
done

for loop with fixed strings

for foo in bar fud 43
do

echo S$foo
done

20

Manufacture step values with

{x..y}

1 davideunexgate:~

[david@unexgate
123
[david@unexgate
321

[david@unexgate

[david@unexgate
5

[david@unexgate
[david@unexgate

[david@unexgate

or seq X Yy

echo {1..3}
echo {3..1}
seq 1 3

i in {1..3};do echo $i;done

i in $(seq 1 3);do echo $i;done

looping thru a file

while read LINE

do

echo SLINE

done < /home/joe/myfile

21

looping thru command output

who |
while read LINE
do

echo SLINE

here documents

Call as “birthday Lincoln" to print
the Lincoln record

grep —-i "$1" <<+

here document
Washington Feb 22

an embedded “pseudo-file”
Lincoln Feb 12 because script takes input
from within the script file

itself instead of resorting
to a real, external file

King Jan 17

+

22

