
1

User managementUser management----
a generalized management script examplea generalized management script example

David Morgan

Adding users Adding users –– actions/mechanicsactions/mechanics
� add record to /etc/passwd

� add record to /etc/shadow

� add record to /etc/group for user’s default group

� add user to pre-existing groups

� create user home directory /home/<username>

� copy default startup files to home directory

� set permissions on new files and directories

� set ownership on new files and directories

� set system password

� set other passwords (e.g., Samba)

� customize user info with, e.g., usermod or chage

� setup mail home/aliases

� set disk quotas

2

Process of adding usersProcess of adding users

� surprisingly extensive, isn’t it!?

� varies among sites (local policies differ)

� no utility does it all

– some do it partially (useradd, passwd)

Steps performed by Steps performed by useradduseradd
� add record to /etc/passwd

� add record to /etc/shadow

� add record to /etc/group for user’s default group

� add user to pre-existing groups

� create user home directory /home/<username>

� copy default startup files to home directory

� set permissions on new files and directories

� set ownership on new files and directories

� set system password

� set other passwords (e.g., Samba)

� customize user info with, e.g., usermod or chage

� setup mail home/aliases

� set disk quotas

3

Steps performed by Steps performed by passwdpasswd
� add record to /etc/passwd

� add record to /etc/shadow

� add record to /etc/group for user’s default group

� add user to pre-existing groups

� create user home directory /home/<username>

� copy default startup files to home directory

� set permissions on new files and directories

� set ownership on new files and directories

� set system password

� set other passwords (e.g., Samba)

� customize user info with, e.g., usermod or chage

� setup mail home/aliases

� set disk quotas

A common approach A common approach ----
adding users in 2 stepsadding users in 2 steps

� run useradd

� then set password with passwd

4

Other approachesOther approaches

� manual - perform individual steps separately

� hybrid - some with utilities, others manually

� automated - all by script(s) you write

“Although the uaseradd and userdel commands are convenient, they are usually

not sufficient to implement all of a site’s local policies. Don’t hesitate to write

your own adduser and rmuser scripts; most larger sites do. …Your homebrew

scripts can call the standard utilities to accomplish part of their work.”

Linux Administration Handbook Nemeth, Snyder, and Hein

Where credit is dueWhere credit is due

Following approach and scripts are from:

Automating Unix and Linux Administration,

Kirk Bauer, Apress, 2003

“For a small number of systems, the standard account

management tools provided with your operating system

are usually adequate.”

Kirk Bauer

5

Account mgmt script's techniquesAccount mgmt script's techniques

� $0 for branching differently if called differently

� export for variable transmissibility to child

� eval

$0 $0 -- command tokencommand token

single script, multiple names

branch/behave depending on name by which script was called

6

export export -- publish publish varvar into childinto child

scripts run in separate shells

what-is-soup.sh's shell lacks variable "soup"

try again

the command shell's "soup" was written into what-is-soup.sh's

due to "export soup", explicit for "soup"

again

the command shell's "soup" was written into what-is-soup.sh's

due to "set -a", implicit for all variables

evaleval

runs assignment to set variable

outputs assignment to set variable

sets a variable

but in its own shell (now vanished), not this one

outputs command to set variable

echos setvars1.sh's output (which is nothing)

echos setvars2.sh's output (which is an assignment to set a variable)

nothing on command line, is OK

assignment on command line, is not OK

neither alias, keyword, function, builtin, nor executable

instead of execute, evaluate

eval sidelight:

multiple traversal of expansion sequence, can "nest" expansions

7

ArchitectureArchitecture

scripts to gather needed data scripts to modify system using it

main script

Ready! - loop thru

these first

Go! - then loop thru

these

Default names/locationsDefault names/locations

/usr/local/lib/usertool/data/ /usr/local/lib/usertool/mod/

/usr/local/sbin/adduser
!! and !!

/usr/local/sbin/deluser
(same script, by symlink/shortcut)

8

Features of noteFeatures of note

� 2-way caller < > callee variable communication

– shells can’t pass variables back to callers, normally

� extensibility - loops capture any/all scripts provided

– no code changes, mere placement plugs new callees in

main:

eval $(fullname.sh)

fullname.sh:

echo “fullname=‘John Smith’”

Communication of variablesCommunication of variables

main script

via export (set -a)

via returned-then-eval’d

assignment statements

fullname.sh

command substitution, replaces command
with its output…

…which is an assignment statement…

…which eval proceeds to execute in caller main,
establishing callee-assigned variable there
(by extension available thereafter to “mod” scripts)

1

2

3

9

AutoAuto--extensibileextensibile by dropby drop--inin

main script

new.sh

new.sh gets called,

no change to main

main:

grab <list of files> in /usr/local/usertool/data/
for file in <list of files> ; do

eval $($file) # execute the output of the file

done

caveat: don’t let stray files in the directory!

note: new programs in any language OK, as long as
they output valid shell commands on stdout

/usr/local/lib/usertool/data/

Example data flowsExample data flows

fullname.sh

shell.sh

extaragroups.sh

homedir.sh

basic.sh

extaragroups.sh

homedir.sh

/etc/passwd

/etc/group

/home or …

e.g., fullname.sh and shell.sh in the data directory solicit from user his full

name and choice of shell, pass results to basic.sh in the mod directory, which

from that and other info composes a standard user record and inscribes it into

the “official user database” /etc/passwd

10

T
yp

ic
a

l
u

s
a

g
e

 s
c
re

e
n

s
h

o
t

T
yp

ic
a

l
u

s
a

g
e

 s
c
re

e
n

s
h

o
t

“data” scripts’ output
(in /usr/local/lib/usertool/data/)

“mod” scripts’ output

(in /usr/local/lib/usertool/mod/)

from aliases.sh

from basic.sh

from extragroups.sh

from zzpasswords.sh & embedded /usr/bin/passwd

sign-off from main script adduser.sh

from aliases.sh

from extragroups.sh

from fullname.sh

from getuid.pl from homedir.sh

from shell.sh

deluserdeluser alternative functionalityalternative functionality

� “adduser” callable by alternative name “deluser”

� it checks by which name it was called

� undoes most (not all) of its “adduser” actions when
called as “deluser” instead

� undoing remainder can be implemented as a custom
add-on script you supply

11

Custom addCustom add--onsons

� write additional programs in any language

� “implementation-by-placement”

– data-gatherers

� must print valid shell commands to stdout,

any screen messages to stderr

� drop into /usr/local/lib/usertool/data/

– system-modifiers

� no output restrictions

� drop into /usr/local/lib/usertool/mod/

– auto-called on next run

– avoid stray files in script directories

� execution order is alphabetical within directory,
name accordingly

