User management--

a generalized management script example

David Morgan

Adding users — actions/mechanics

add record to /etc/passwd

add record to /etc/shadow

add record to /etc/group for user’s default group
add user to pre-existing groups

create user home directory /home/<username>
copy default startup files to home directory

set permissions on new files and directories

set ownership on new files and directories

set system password

set other passwords (e.g., Samba)

customize user info with, e.g., usermod or chage
setup mail home/aliases

set disk quotas

Process of adding users

e surprisingly extensive, isn’t it!?
e varies among sites (local policies differ)
e no utility does it all

— some do it partially (useradd, passwd)

Steps performed by useradd

add record to /etc/passwd

add record to /etc/shadow

add record to /etc/group for user’s default group
add user to pre-existing groups

create user home directory /home/<username>
copy default startup files to home directory

set permissions on new files and directories

set ownership on new files and directories

set system password

set other passwords (e.g., Samba)

customize user info with, e.g., usermod or chage
setup mail home/aliases

set disk quotas

Steps performed by passwd

add record to /etc/passwd

add record to /etc/shadow

add record to /etc/group for user’s default group
add user to pre-existing groups

create user home directory /home/<username>
copy default startup files to home directory

set permissions on new files and directories

set ownership on new files and directories

set system password

set other passwords (e.g., Samba)

customize user info with, e.g., usermod or chage
setup mail home/aliases

set disk quotas

A common approach --
adding users in 2 steps

e run useradd
e then set password with passwd

Other approaches

e manual - perform individual steps separately
e hybrid - some with utilities, others manually
e automated - all by script(s) you write

“Although the uaseradd and userdel commands are convenient, they are usually
not sufficient to implement all of a site’s local policies. Don’t hesitate to write
your own adduser and rmuser scripts; most larger sites do. ... Your homebrew
scripts can call the standard utilities to accomplish part of their work.”

Linux Administration Handbook Nemeth, Snyder, and Hein

Where credit is due

Following approach and scripts are from:

Automating Unix and Linux Administration,
Kirk Bauer, Apress, 2003

%2 ' “For a small number of systems, the standard account
management tools provided with your operating system
Automating are usually adequate.”
UNIX and Linux Kirk Bauer

Administration

Account mgmt script's techniques

® $0 for branching differently if called differently
® export for variable transmissibility to child
e cval

$0 - command token

[root@instructor ~]#

[root@instructor ~]# 1s -1 [ad][deu]*.sh
lrwxrwxrwx 1 root root 19 Jul 31 12:23
Lrwxrwxrwx 1 root root 19 Jul 31 12:24
-rwxr-xr-x 1 root root 188 Jul 31 12:20 dual-pers
[root@instructor ~]#

[root@instructor ~]# cat dual-personality.sh

if ["$0" = "./adder.sh"]; then single script, multiple names
echo "I am the one that adds"
commands for adding

elif ["$0" = "./deleter.sh"”]; then
echo "I am the one that deletes"

commands for deleting
i > branch/behave depending on name by which script was called

[root@instructor ~]# ./adder.sh

1 am the one that adds
[root@instructor ~]#
[root@instructor ~]# ./deleter.sh
I am the one that deletes
[root@instructor ~]#
[root@instructor ~]# I

export - publish var into chil

[root@instructor # cat what-is-soup.sh
echo $soup

[root@instructor soup=clamchowder

[root@instructor echo $soup

clamchowder

[root@instructor . fwhat-is-soup.sh <——— scripts run in separate shells

what-is-soup.sh's shell lacks variable "soup

[root@instructor export soup)

[root@instructor ~]# ./what-is-soup.sh <— ryagain

clamchowder <&————————————— the command shell's "soup" was written into what-is-soup.sh's
[root@instructor ~]# due to "export soup”, explicit for "soup"
[root@instructor ~]# unset soup

[root@instructor ~]# echo $soup

[root@instructor ~]# set -a

[root@instructor ~1# soup=clamchowder

[root@instructor ~1# ./what-is-soup.sh <— again

clamchowder <—————— the command shell's "soup" was written into what-is-soup.sh's
[root@instructor ~]# I due to "set -a", implicit for all variables

[arg ...
are read and concatenated together into a single command. This command is then read and executed by the
, and its exit status is returned as the value of eval. If there are no args, or only null arguments, eval
returns 0.

cat setvarsl.sh

runs assignment to set variable

[root@instructor ~]# cat setvars2.sh
echo soup=borscht <——— outputs assignment to set variable

[root@instructor ~]# ./setvarsl.sh <€—— sets a variable
[root@instructor ~]# echo $soup

<——— hbut in its own shell (now vanished), not this one
[root@instructor ~1# ./setvars2.sh .
soup=borscht <—— outputs command to set variable

[root@instructor ~]# echo $(./setvarsl.sh) <——— echos setvars].sh's output (which is nothing)

[root@instructor ~]# echo $(./setvars2.sh) <&——— cchos setvars2.sh's output (which is an assignment to set a variable)
soup=borscht

[root@instructor ~]#

[root@instructor ~]# $(./setvarsl.sh) <———— nothing on command line, is OK

[root@instructor ~]# $(./setvars2.sh) ¢

bash: soup=borscht: command not found...
[root@instructor ~]# eval $(./setvars2.sh)

[rooteinstructor ~]# echo $SOL£7 instead of execute, evaluate
borscht

[root@instructor ~]4
[root@instructor ~]# VAR=re{peat,port,sist}er

assignment on command line, is not OK
neither alias, keyword, function, builtin, nor executable

[root@instructor ~]# echo $VAR eval sidelight:

re{peat,port,sist}er / multiple traversal of expansion sequence, can "nest" expansions
[root@instructor ~]#

[root@instructor ~]# eval echo $VAR

repeater reporter resister

[root@instructor ~]#

Architecture

Ready! - loop thru Go! - then loop thru
these first these

scripts to gather needed data scripts to modify system using it

Default names/locations

/usr/local/sbin/adduser
Mand !!
/usr/local/sbin/deluser

(same script, by symlink/shortcut)

/usr/local/lib/usertool/data/ /usr/local/lib/usertool/mod/

Features of note

e 2-way caller < > callee variable communication
— shells can’t pass variables back to callers, normally
e cxtensibility - loops capture any/all scripts provided

— no code changes, mere placement plugs new callees in

Communication of variables

main: "/ /

eval $(fullname.sh)
%(_J

command substitution, replaces command
with its output...

fullname.sh:
echo “fullname=*John Smith”’

...which eval proceeds to execute in caller main,
establishing callee-assigned variable there
(by extension available thereafter to “mod” scripts)

...which is an assignment statement...

Auto-extensibile by drop-in

main:

grab <list of files> in /usr/local/usertool/data/
for file in <list of files> ; do

eval $($file) # execute the output of the file
done

caveat: don’t let stray files in the directory!

note: new programs in any language OK, as long as
they output valid shell commands on stdout

/usr/local/lib/usertool/data/

Example data flows

fullname.sh basic.sh /etc/passwd
shell.sh

extaragroups.sh extaragroups.sh /etc/group

homedir.sh homedir.sh /home or ...

e.g., fullname.sh and shell.sh in the data directory solicit from user his full
name and choice of shell, pass results to basic.sh in the mod directory, which
from that and other info composes a standard user record and inscribes it into
the “official user database” /etc/passwd

v EECERE Shell- Konsole 4 % i B [root@fedorasl usertool]s pwd; tree |
fusr/local/lib/usertool
Session Edit View Bookmarks Settings Help

I

[root@EMACHL ~]# /fusr/local/sbin/adduser lew

Enter mail alias [leave blank when dome]: <—— fromaliases.sh

Select one or more extra groups:

1) dev <—— from extragroups.sh -
2) cvs ‘ !
3) web romeunt. =
Enter group ('q' to quit): g :

Enter full name for lew: Lew Smith <—— from fullname.sh

Allocated UID/GID: 500 <—— from getuid.pl — from homedir.sh

1) /home (12029 MB avail) 3) server2:/export/home (?? MB avail)

2) /fexport/home (?? MB avail) 4) serverd:/export/home (?? MB avail)
#? 1
from shell.sh « 9 gl >
Select a shell: <« dﬂtﬂ SCrlptS Output
1) /bin/bash 3) /bin/ksh 5) /bin/tesh 7) /sbin/nologin (in /usr/local/lib/usertool/data/)

2) /bin/csh 4) /bin/sh 6) /bin/zsh
#? 1

Adding mail alias for lew: Lew.Smith <—— fromaliases.sh
Creating entry in /etc/passwd... 113 EE) .)
Creating entry in /etc/group... <—— from basic.sh mod SCrlp[S OUtPUt

Creating entry in /etc/shadow... . (in /usr/local/lib/usertool/mod/)
|Adding lew to group public <—— from extragroups.sh

Typical usage screenshot

Setting account password...

Changing password for user lew.

New UNIX password:

[Retype new UNIX password:

ipasswd: all authentication tokens updated successfully.

<—— from zzpasswords.sh & embedded /usr/bin/passwd

lAction adduser for lew has been completed <—— sign-off from main script adduser.sh

[root@EMACHL ~1# [

deluser alternative functionality

“adduser” callable by alternative name “deluser”
it checks by which name it was called

undoes most (not all) of its “adduser’” actions when
called as “deluser” instead

undoing remainder can be implemented as a custom
add-on script you supply

10

Custom add-ons

e write additional programs in any language
e “implementation-by-placement”
— data-gatherers

e must print valid shell commands to stdout,
any screen messages to stderr

e drop into /ust/local/lib/usertool/data/
— system-modifiers

e no output restrictions

e drop into /usr/local/lib/usertool/mod/
— auto-called on next run
— avoid stray files in script directories

e cxecution order is alphabetical within directory,
name accordingly

11

